[1]ZHAO Zhenbing,GUO Guangxue,WANG Yiheng,et al.Rust detection in transmission line fittings via fusion of edge perception and statistical texture knowledge[J].CAAI Transactions on Intelligent Systems,2024,19(5):1228-1237.[doi:10.11992/tis.202306009]
Copy

Rust detection in transmission line fittings via fusion of edge perception and statistical texture knowledge

References:
[1] 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560.
ZHAO Zhenbing, JIANG Zhigang, LI Yanxu, et al. Overview of visual defect detection of transmission line components[J]. Journal of image and graphics, 2021, 26(11): 2545-2560.
[2] 宋伟, 左丹, 邓邦飞, 等. 高压输电线防震锤锈蚀缺陷检测[J]. 仪器仪表学报, 2016, 37(S1): 113-117.
SONG Wei, ZUO Dan, DENG Bangfei, et al. Corrosion defect detection of earthquake hammer for high voltage transmission line[J]. Chinese journal of scientific instrument, 2016, 37(S1): 113-117.
[3] 戴玉静, 吕东辉, 郭松鸽. 基于颜色和纹理特征的输电线路锈蚀区域检测[J]. 工业控制计算机, 2018, 31(9): 39-40,43.
DAI Yujing, LYU Donghui, GUO Songge. Transmission line rusted area detection scheme based on color and texture features[J]. Industrial control computer, 2018, 31(9): 39-40,43.
[4] HUANG Xinbo, ZHANG Xiaoling, ZHANG Ye, et al. A method of identifying rust status of dampers based on image processing[J]. IEEE transactions on instrumentation and measurement, 2020, 69(8): 5407-5417.
[5] 王红星, 陈玉权, 沈杰, 等. 一种新型半监督极限学习机及其在防震锤锈蚀检测中的应用[J]. 计算机科学, 2020, 47(12): 262-266.
WANG Hongxing, CHEN Yuquan, SHEN Jie, et al. Novel Semi-supervised extreme learning machine and its application in Anti-vibration hammer corrosion detection[J]. Computer science, 2020, 47(12): 262-266.
[6] 刘军, 孙庆, 刘玮, 等. 基于U-Net网络和椭圆度量学习的防震锤锈蚀识别[J]. 计算机技术与发展, 2020, 30(11): 163-167.
LIU Jun, SUN Qing, LIU Wei, et al. Identification of Anti-vibration hammer corrosion of high-voltage transmission lines based on U-Net network and elliptic metric learning[J]. Computer technology and development, 2020, 30(11): 163-167.
[7] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[8] 李辉, 钟平, 戴玉静, 等. 基于深度学习的输电线路锈蚀检测方法的研究[J]. 电子测量技术, 2018, 41(22): 54-59.
LI Hui, ZHONG Ping, DAI Yujing, et al. Study on detection method of transmission line rusty based on deep learning[J]. Electronic measurement technology, 2018, 41(22): 54-59.
[9] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[10] 汤踊, 韩军, 魏文力, 等. 深度学习在输电线路中部件识别与缺陷检测的研究[J]. 电子测量技术, 2018, 41(6): 60-65.
TANG Yong, HAN Jun, WEI Wenli, et al. Research on part recognition and defect detection of trainsmission line in deep learning[J]. Electronic measurement technology, 2018, 41(6): 60-65.
[11] ATHA D J, JAHANSHAHI M R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection[J]. Structural health monitoring, 2018, 17(5): 1110-1128.
[12] CHEN Fuchen, JAHANSHAHI M R. NB-CNN: deep learning-based crack detection using convolutional neural network and Na?ve Bayes data fusion[J]. IEEE transactions on industrial electronics, 2018, 65(5): 4392-4400.
[13] SONG Zhiwei, HUANG Xinbo, JI Chao, et al. Deformable YOLOX: detection and rust warning method of transmission line connection fittings based on image processing technology[J]. IEEE transactions on instrumentation and measurement, 2023, 72: 1-21.
[14] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464-7475.
[15] YANG Lingxiao, ZHANG Ruyuan , LI Lida, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//International conference on machine learning. New York: PMLR, 2021: 11863-11874.
[16] TONG Zanjia, CHEN Yuhang, XU Zewei, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-01-24)[2023-06-06]. http://arxiv.org/abs/2301.10051.
[17] SUNKARA R, LUO Tie. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2023: 443-459.
[18] XIAO Xiao, LIAN Shen, LUO Zhiming, et al. Weighted res-UNet for high-quality retina vessel segmentation[C]// 2018 9th International Conference on Information Technology in Medicine and Education. Hangzhou: IEEE, 2018: 327-331.
[19] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[20] ZHU Lanyun, JI Deyi, ZHU Shiping, et al. Learning statistical texture for semantic segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 12532-12541.
[21] SUN Yujia, WANG Shuo, CHEN C, et al. Boundary- guided camouflaged object detection[EB/OL]. (2022-07-02)[2023-06-06]. http://arxiv.org/abs/2207.00794.
[22] 赵文清, 程幸福, 赵振兵, 等. 注意力机制和Faster RCNN相结合的绝缘子识别[J]. 智能系统学报, 2020, 15(1): 92-98.
ZHAO Wenqing, CHENG Xingfu, ZHAO Zhenbing, et al. Insulator recognition based on attention mechanism and Faster RCNN[J]. CAAI transactions on intelligent systems, 2020, 15(1): 92-98.
[23] FUKUI A, PARK D H, YANG D, et al. Multimodal compact bilinear pooling for visual question answering and visual grounding[EB/OL]. (2016-06-06)[2023-06-06]. http://arxiv.org/abs/1606.01847.
[24] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[25] FARHADI A, REDMON J. YOLOv3: an incremental improvement[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1804-2767.
[26] BOCHKOVSKIY A, WANG C Y, LIAO H M, et al. YOLOv4: optimal speed and accuracy of object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2-7.
[27] SUN Peize, ZHANG Rufeng, JIANG Yi, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 14449-14458.
[28] ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. (2020-10-08)[2023-06-06]. http://arxiv.org/abs/2010.04159.
[29] LIU Shilong, LI Feng, ZHANG Hao, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[EB/OL]. (2022-01-28)[2023-06-06]. http://arxiv.org/abs/2201.12329.
[30] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230-6239.
[31] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[32] HUANG Lang, YUAN Yuhui, GUO Jianyuan, et al. Interlaced sparse self-attention for semantic segmentation[EB/OL]. (2019-07-29)[2023-06-06]. http://arxiv.org/abs/1907.12273.
[33] YU Changqian, GAO Changxin, WANG Jingbo, et al. BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International journal of computer vision, 2021, 129(11): 3051-3068.
[34] XIE Enze, WANG Wenhai, YU Zhiding, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. Advances in neural information processing systems, 2021, 34: 12077-12090.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems