[1]ZHAO Zhenbing,WANG Rui,WANG Yiheng,et al.Bolt defect recognition method for transmission line based on joint structure-semantic relationship graph knowledge reasoning[J].CAAI Transactions on Intelligent Systems,2024,19(6):1584-1592.[doi:10.11992/tis.202305050]
Copy

Bolt defect recognition method for transmission line based on joint structure-semantic relationship graph knowledge reasoning

References:
[1] 周远翔, 陈健宁, 张灵, 等. “双碳” 与“新基建” 背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47(7): 2396-2408.
ZHOU Yuanxiang, CHEN Jianning, ZHANG Ling, et al. Opportunity for developing ultra high voltage transmission technology under the emission peak, carbon neutrality and new infrastructure[J]. High voltage engineering, 2021, 47(7): 2396-2408.
[2] SUMAGAYAN M U, PREMACHANDRA C, MANGORSI R B, et al. Detecting power lines using point instance network for distribution line inspection[J]. IEEE access, 2021, 9: 107998-108008.
[3] 傅博, 姜勇, 王洪光, 等. 输电线路巡检图像智能诊断系统[J]. 智能系统学报, 2016, 11(1): 70-77.
FU Bo, JIANG Yong, WANG Hongguang, et al. Intelligent diagnosis system for patrol check images of power transmission lines[J]. CAAI transactions on intelligent systems, 2016, 11(1): 70-77.
[4] MAO Tianqi, HUANG Kai, ZENG Xianwu, et al. Development of power transmission line defects diagnosis system for UAV inspection based on binocular depth imaging technology[C]//2019 2nd International Conference on Electrical Materials and Power Equipment. Guangzhou: IEEE, 2019: 478-481.
[5] 赵振兵, 张帅, 蒋炜, 等. 基于DBSCAN-FPN的输电线路螺栓缺销检测方法[J]. 中国电力, 2021, 54(3): 45-54.
ZHAO Zhenbing, ZHANG Shuai, JIANG Wei, et al. Detection method for bolts with mission pins on transmission lines based on DBSCAN-FPN[J]. Electric power, 2021, 54(3): 45-54.
[6] ZHAO Zhenbing, QI Hongyu, QI Yincheng, et al. Detection method based on automatic visual shape clustering for pin-missing defect in transmission lines[J]. IEEE transactions on instrumentation and measurement, 2020, 69(9): 6080-6091.
[7] HE Hui, LI Yuchen, YANG Jing, et al. Pin-missing defect recognition based on feature fusion and spatial attention mechanism[J]. Energy reports, 2022, 8: 656-663.
[8] WANG Hongchao, SHAO Yunfeng, ZOU Suli, et al. Detection of cotter pins missing of connection fittings on transmission lines of power system[C]//2021 40th Chinese Control Conference. Shanghai: IEEE, 2021: 6873-6879.
[9] LIN Z, LIANG Y, JIANG Q. A bolt defect recognition algorithm based on attention model[C]//Proceedings of the 7th International Conference on Fuzzy Systems and Data Mining. Seoul: IOS, 2021: 86-93.
[10] 张珂, 何颖宣, 赵凯, 等. 可变形NTS-Net的螺栓属性多标签分类[J]. 中国图象图形学报, 2021, 26(11): 2582-2593.
ZHANG Ke, HE Yingxuan, ZHAO Kai, et al. Multi-label classification method of bolt attributes based on deformable NTS-Net[J]. Journal of image and graphics, 2021, 26(11): 2582-2593.
[11] ZHAO Zhenbing, WANG Rui, LI Yanxu, et al. A new multilabel recognition framework for transmission lines bolt defects based on the combination of semantic knowledge and structural knowledge[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 5020211.
[12] 赵振兵, 王睿, 赵文清, 等. 基于图知识推理的输电线路缺销螺栓识别方法[J]. 智能系统学报, 2023, 18(2): 372-380.
ZHAO Zhenbing, WANG Rui, ZHAO Wenqing, et al. Pin-missing bolts recognition method for transmission lines based on graph knowledge reasoning[J]. CAAI transactions on intelligent systems, 2023, 18(2): 372-380.
[13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[14] 赵强, 左石. 输电线路金具理论与应用[M]. 北京: 中国电力出版社, 2013: 2-12.
[15] OGUZ YAZICI V, GONZALEZ-GARCIA A, RAMISA A, et al. Orderless recurrent models for multi-label classification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13437-13446.
[16] KE Xiao, LIU Tongan, LI Zhenda. Human attribute recognition method based on pose estimation and multiple-feature fusion[J]. Signal, image and video processing, 2020, 14(7): 1441-1449.
[17] ZHOU Feng, HUANG Sheng, XING Yun. Deep semantic dictionary learning for multi-label image classification[EB/OL]. (2020-12-23)[2021-12-01]. https://arxiv.orglabs/2012.12509.
[18] CHEN Zhaomin, WEI Xiushen, WANG Peng, et al. Multi-label image recognition with graph convolutional networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5172-5181.
[19] GAO Binbin, ZHOU Hongyu. Learning to discover multi-class attentional regions for multi-label image recognition[J]. IEEE transactions on image processing: a publication of the IEEE signal processing society, 2021, 30: 5920-5932.
[20] NGUYEN H D, VU X S, LE D T. Modular graph transformer networks for multi-label image classification[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: Association for the Advancement of Artificial Intelligence, 2021: 9092-9100.
[21] FU Kui, LI Jia, MA Lin, et al. Intrinsic relationship reasoning for small object detection[EB/OL]. (2020-09-02)[2021-01-01]. https://arxiv.org/abs/2009.00833.
[22] ZHAO Jiawei, YAN Ke, ZHAO Yifan, et al. Transformer-based dual relation graph for multi-label image recognition[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 163-172.
[23] YE Jin, HE Junjun, PENG Xiaojiang, et al. Attention-driven dynamic graph convolutional network for multi-label image recognition[C]//European Conference on Computer Vision. Cham: Springer, 2020: 649-665.
[24] LIU Yong, WANG Ruiping, SHAN Shiguang, et al. Structure inference net: object detection using scene-level context and instance-level relationships[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6985-6994.
[25] 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237-246.
ZHAI Yongjie, YANG Xu, ZHAO Zhenbing, et al. Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J]. CAAI transactions on intelligent systems, 2021, 16(2): 237-246.
[26] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09)[2021-01-01]. https://arxiv.org/abs/1609.02907.
Similar References:

Memo

-

Last Update: 2024-11-05

Copyright © CAAI Transactions on Intelligent Systems