[1]WANG Dewen,CHEN Wei,SU Pan.Single-image dehazing via a coarse-to-fine multiscale approach[J].CAAI Transactions on Intelligent Systems,2024,19(5):1102-1110.[doi:10.11992/tis.202305005]
Copy

Single-image dehazing via a coarse-to-fine multiscale approach

References:
[1] 王道累, 张天宇. 图像去雾算法的综述及分析[J]. 图学学报, 2020, 41(6): 861-870.
WANG Daolei, ZHANG Tianyu. Review and analysis of image defogging algorithm[J]. Journal of graphics, 2020, 41(6): 861-870.
[2] NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J]. International journal of computer vision, 2002, 48(3): 233-254.
[3] HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(12): 2341-2353.
[4] 张世辉, 路佳琪, 宋丹丹, 等. 基于多尺度特征结合细节恢复的单幅图像去雾方法[J]. 电子与信息学报, 2022, 44(11): 3967-3976.
ZHANG Shihui, LU Jiaqi, SONG Dandan, et al. Single image dehazing method based on multi-scale features combined with detail recovery[J]. Journal of electronics & information technology, 2022, 44(11): 3967-3976.
[5] ZHU Qingsong, MAI Jiaming, SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE transactions on image processing, 2015, 24(11): 3522-3533.
[6] 王科平, 杨艺, 费树岷. 雾霾图像清晰化算法综述[J]. 智能系统学报, 2023, 18(2): 217-230.
WANG Keping, YANG Yi, FEI Shumin. Review of hazy image sharpening methods[J]. CAAI transactions on intelligent systems, 2023, 18(2): 217-230.
[7] CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE transactions on image processing, 2016, 25(11): 5187-5198.
[8] LI Boyi, PENG Xiulian, WANG Zhangyang, et al. AOD-net: all-in-one dehazing network[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4780-4788.
[9] REN Wenqi, LIU Si, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks[C]//European Conference on Computer Vision. Cham: Springer, 2016: 154-169.
[10] CHEN Dongdong, HE Mingming, FAN Qingnan, et al. Gated context aggregation network for image dehazing and deraining[C]//2019 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2019: 1375-1383.
[11] QU Yanyun, CHEN Yizi, HUANG Jingying, et al. Enhanced pix2pix dehazing network[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 8152-8160.
[12] QIN Xu, WANG Zhilin, BAI Yuanchao, et al. FFA-net: feature fusion attention network for single image dehazing[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 11908-11915.
[13] WU Haiyan, QU Yanyun, LIN Shaohui, et al. Contrastive learning for compact single image dehazing[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10546-10555.
[14] 高峰, 汲胜昌, 郭洁, 等. 采用对比学习的多阶段Transformer图像去雾方法[J]. 西安交通大学学报, 2023, 57(1): 195-210.
GAO Feng, JI Shengchang, GUO Jie, et al. A multi-stage transformer network for image dehazing based on contrastive learning[J]. Journal of Xi’an Jiaotong University, 2023, 57(1): 195-210.
[15] ZHANG Hongguang, DAI Yuchao, LI Hongdong, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5971-5979.
[16] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer, 2015: 234-241.
[17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[18] 范新南, 赵忠鑫, 严炜, 等. 结合注意力机制的多尺度特征融合图像去雾算法[J]. 计算机科学, 2022, 49(5): 50-57.
FAN Xinnan, ZHAO Zhongxin, YAN Wei, et al. Multi-scale feature fusion image dehazing algorithm combined with attention mechanism[J]. Computer science, 2022, 49(5): 50-57.
[19] CHO S J, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 4621-4630.
[20] ZHANG Hongyi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2017-10-25)[2023-05-05]. https://arxiv.org/abs/1710.09412.
[21] 张重生, 陈杰, 李岐龙, 等. 深度对比学习综述[J]. 自动化学报, 2023, 49(1): 15-39.
ZHANG Chongsheng, CHEN Jie, LI Qilong, et al. Deep contrastive learning: a survey[J]. Acta automatica sinica, 2023, 49(1): 15-39.
[22] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 105-114.
[23] LI Boyi, REN Wenqi, FU Dengpan, et al. Benchmarking single-image dehazing and beyond[J]. IEEE transactions on image processing, 2019, 28(1): 492-505.
[24] ANCUTI C O, ANCUTI C, TIMOFTE R. NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1798-1805.
[25] ANCUTI C O, ANCUTI C, VASLUIANU F A, et al. NTIRE 2021 NonHomogeneous dehazing challenge report[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Nashville: IEEE, 2021: 627-646.
[26] HE Tong, ZHANG Zhi, ZHANG Hang, et al. Bag of tricks for image classification with convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 558-567.
[27] DONG Hang, PAN Jinshan, XIANG Lei, et al. Multi-scale boosted dehazing network with dense feature fusion[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2154-2164.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems