[1]ZHANG Xiaochuan,CHEN Panpan,XING Xinlai,et al.A data augmentation method built on GPT-2 model[J].CAAI Transactions on Intelligent Systems,2024,19(1):209-216.[doi:10.11992/tis.202304055]
Copy

A data augmentation method built on GPT-2 model

References:
[1] AGGARWAL C C, ZHAI Chengxiang. A survey of text classification algorithms[M]. Boston: Springer, 2012: 163?222.
[2] ASH J T, ZHANG Chicheng, KRISHNAMURTHY A, et al. Deep batch active learning by diverse, uncertain gradient lower bounds[EB/OL]. (2020?02?24)[2023?04?30]. https://arxiv.org/abs/1906.03671.pdf.
[3] CUBUK E D, ZOPH B, MAN? D, et al. AutoAugment: learning augmentation strategies from data[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 113?123.
[4] 孙晓,丁小龙. 基于生成对抗网络的人脸表情数据增强方法[J]. 计算机工程与应用, 2020, 56(4): 115–121
SUN Xiao, DING Xiaolong. A facial expression data enhancement method based on generative adversarial networks[J]. Computer engineering and applications, 2020, 56(4): 115–121
[5] WEI J, ZOU Kai. EDA: easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019: 6382?6388.
[6] KARIMI A, ROSSI L, PRATI A. AEDA: an easier data augmentation technique for text classification[C]//Findings of the Association for Computational Linguistics: EMNLP 2021. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021: 2748?2754.
[7] ANABY-TAVOR A, CARMELI B, GOLDBRAICH E, et al. Do not have enough data? deep learning to the rescue![J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(5): 7383–7390.
[8] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8): 9.
[9] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis: Association for Computational Linguistics, 2019: 4171?4186.
[10] ZHANG Xiang, ZHAO Junbo, LECUN Y. Character-level convolutional networks for text classification[C]//NIPS’15: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. Cambridge: MIT Press, 2015: 649?657.
[11] WU Xing, LV Shangwen, ZANG Liangjun, et al. Conditional BERT contextual augmentation[C]//International Conference on Computational Science. Cham: Springer, 2019: 84?95.
[12] JIAO Xiaoqi, YIN Yichun, SHANG Lifeng, et al. TinyBERT: distilling BERT for natural language understanding[C]//Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: Association for Computational Linguistics, 2020: 4163?4174.
[13] NG N, YEE K, BAEVSKI A, et al. Facebook FAIR’s WMT19 news translation task submission[C]//Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1). Stroudsburg: Association for Computational Linguistics, 2019: 314?319.
[14] HOU Yutai, CHEN Sanyuan, CHE Wanxiang, et al. C2C-GenDA: cluster-to-cluster generation for data augmentation of slot filling[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(14): 13027–13035.
[15] KOBER T, WEEDS J, BERTOLINI L, et al. Data augmentation for hypernymy detection[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Stroudsburg: Association for Computational Linguistics, 2021: 1034?1048.
[16] PENG Baolin, ZHU Chenguang, ZENG M, et al. Data augmentation for spoken language understanding via pretrained language models[EB/OL]. (2021?03?11)[2023?04?30]. https://arxiv.org/abs/2004.13952.pdf.
[17] SAHIN G G, STEEDMAN M. Data augmentation via dependency tree morphing for low-resource languages[EB/OL]. (2019?03?22)[2023?04?30]. https://arxiv.org/abs/1903.09460.pdf.
[18] SUN Lichao, XIA Congying, YIN Wenpeng, et al. Mixup-transformer: dynamic data augmentation for NLP tasks[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, PA, USA: International Committee on Computational Linguistics, 2020: 3436?3440.
[19] FENG S Y, GANGAL V, KANG D, et al. GenAug: data augmentation for finetuning text generators[C]//Proceedings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. Stroudsburg: Association for Computational Linguistics, 2020: 29?42.
[20] ANDREAS J. Good-enough compositional data augmentation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 7556?7566.
[21] GUO Demi, KIM Y, RUSH A. Sequence-level mixed sample data augmentation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2020: 5547?5552.
[22] 丁家杰, 肖康, 叶恒等. 面向问答领域的数据增强方法[J]. 北京大学学报(自然科学版), 2022, 58(11): 54–60
DING Jiajie, Xiao Kang, Ye Heng, et al. A data augmentation method for the field of question and answer[J]. Acta scientiarum naturalium universitatis pekinensis, 2022, 58(11): 54–60
[23] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. (2018)[2023?04?26]. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
[24] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 1877?1901.
[25] OUYANG Long, WU J, XU Jiang, et al. Training language models to follow instructions with human feedback[C]//Advances in Neural Information Processing Systems. New Orleans: Curran Associates, Inc. , 2022: 27730?27744.
[26] ABONIZIO Q H, JUNIOR B S. Pre-trained data augmentation for text classification[C]//Intelligent Systems: 9th Brazilian Conference, BRACIS 2020, Rio Grande, Brazil, October 20–23, 2020, Proceedings, Part I. Cham: Springer International Publishing, 2020: 551?565.
[27] KUMAR V, CHOUDHARY A, CHO E. Data augmentation using pre-trained transformer models[C]//Proceedings of the 2nd Workshop on Life-long Learning for Spoken Language Systems. Suzhou, China: Association for Computational Linguistics, 2020: 18?26.
[28] BAYER M, KAUFHOLD M A, BUCHHOLD B, et al. Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers[J]. International journal of machine learning and cybernetics, 2023, 14(1): 135–150.
[29] CLAVEAU V, CHAFFIN A, KIJAK E. Generating artificial texts as substitution or complement of training data[C]//Proceedings of the Thirteenth Language Resources and Evaluation Conference. Marseille, France: European Language Resources Association, 2022: 4260?4269.
[30] LIU Ruibo, XU Guangxuan, JIA Chenyan, et al. Data boost: text data augmentation through reinforcement learning guided conditional generation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2020: 9031–9041.
[31] DAI Haixing, LIU Zhengliang, LIAO Wenxiong, et al. AugGPT: leveraging ChatGPT for text data augmentation[EB/OL]. (2023?03?20)[2023?04?30]. https://arxiv.org/abs/2302.13007.pdf.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems