[1]ZHOU Zaiyong,DI Lan.Research on textile defect detection method combining attention mechanism[J].CAAI Transactions on Intelligent Systems,2024,19(4):827-838.[doi:10.11992/tis.202304045]
Copy

Research on textile defect detection method combining attention mechanism

References:
[1] 胡娜, 马慧, 湛涛. 融合LBP纹理特征与B2DPCA技术的手指静脉识别方法[J]. 智能系统学报, 2019, 14(3): 533–540
HU Na, MA Hui, ZHAN Tao. Finger vein recognition method combining LBP texture feature and B2DPCA technology[J]. CAAI transactions on intelligent systems, 2019, 14(3): 533–540
[2] 狄岚, 赵树志, 何锐波. 基于光照预处理与特征提取的纺织品瑕疵检测方法[J]. 智能系统学报, 2019, 14(4): 716–724
DI Lan, ZHAO Shuzhi, HE Ruibo. Fabric defect inspection based on illumination preprocessing and feature extraction[J]. CAAI transactions on intelligent systems, 2019, 14(4): 716–724
[3] 马明寅, 狄岚, 梁久祯. 基于图像校正和模板分割的纺织品瑕疵检测[J]. 南京大学学报 (自然科学版), 2021, 57(1): 29–41
MA Mingyin, DI Lan, LIANG Jiuzhen. Fabric defect detection based on image correction and template segmentation[J]. Journal of Nanjing University (natural science edition), 2021, 57(1): 29–41
[4] 龙涵彬, 狄岚, 梁久祯. 基于畸变校正与视觉显著特征的纺织品瑕疵检测[J]. 模式识别与人工智能, 2020, 33(12): 1122-1134.
LONG Hanbin, DI Lan, LIANG Jiuzhen. Fabric defect detection based on distortion correction and visual salient features[J]. Pattern recognition and artificial intelligence, 2020, 33(12): 1122-1134.
[5] WU Xiongwei, SAHOO D, HOI S C H. Recent advances in deep learning for object detection[J]. Neurocomputing, 2020, 396: 39–64.
[6] 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629–654
ZHAO Yongqiang, RAO Yuan, DONG Shipeng, et al. Survey on deep learning object detection[J]. Journal of image and graphics, 2020, 25(4): 629–654
[7] ROSS Girshick, JEFF Donahue, TREVOR Darrell, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE Computer Society, 2014: 580-587.
[8] ROSS G. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE Computer Society, 2015: 1440-1448.
[9] 赵文清, 程幸福, 赵振兵, 等. 注意力机制和Faster RCNN相结合的绝缘子识别[J]. 智能系统学报, 2020, 15(1): 92–98
ZHAO Wenqing, CHENG Xingfu, ZHAO Zhenbing, et al. Insulator recognition based on attention mechanism and Faster RCNN[J]. CAAI transactions on intelligent systems, 2020, 15(1): 92–98
[10] HE Xinying, WU Liming, SONG Feiyang, et al. Research on fabric defect detection based on deep fusion DenseNet-SSD network[C]//Proceedings of the International Conference on Wireless Communication and Sensor Networks. Warsaw Poland: Association for Computing Machinery, 2020: 60-64.
[11] CAO Guimei, XIE Xuemei, YANG Wenzhe, et al. Feature-fused SSD: fast detection for small objects[C]//Ninth International Conference on Graphic and Image Processing. Qingdao: International Society for Optics and Photonics, 2018: 106151E.
[12] 王晓林, 苏松志, 刘晓颖, 等. 一种基于级联神经网络的飞机检测方法[J]. 智能系统学报, 2020, 15(4): 697–704
WANG Xiaolin, SU Songzhi, LIU Xiaoying, et al. Cascade convolutional neural networks for airplane detection[J]. CAAI transactions on intelligent systems, 2020, 15(4): 697–704
[13] 陈丽, 马楠, 逄桂林, 等. 多视角数据融合的特征平衡YOLOv3行人检测研究[J]. 智能系统学报, 2021, 16(1): 57–65
CHEN Li, MA Nan, PANG Guilin, et al. Research on multi-view data fusion and balanced YOLOv3 for pedestrian detection[J]. CAAI transactions on intelligent systems, 2021, 16(1): 57–65
[14] GE Zheng, LIU Songtao, WANG Feng, et al. Yolox: Exceeding yolo series in 2021[EB/OL]. (2021-07-18) [2023-04-22]. https://arxiv.org/abs/:2107.08430.
[15] 毛明毅, 吴晨, 钟义信, 等. 加入自注意力机制的BERT命名实体识别模型[J]. 智能系统学报, 2020, 15(4): 772–779
MAO Mingyi, WU Chen, ZHONG Yixin, et al. BERT named entity recognition model with self-attention mechanism[J]. CAAI transactions on intelligent systems, 2020, 15(4): 772–779
[16] 王凤随, 陈金刚, 王启胜, 等. 自适应上下文特征的多尺度目标检测算法[J]. 智能系统学报, 2022, 17(2): 276–285
WANG Fengsui, CHEN Jingang, WANG Qisheng, et al. Multi-scale target detection algorithm based on adaptive context features[J]. CAAI transactions on intelligent systems, 2022, 17(2): 276–285
[17] 王召新, 续欣莹, 刘华平, 等. 基于级联宽度学习的多模态材质识别[J]. 智能系统学报, 2020, 15(4): 787–794
WANG Zhaoxin, XU Xinying, LIU Huaping, et al. Cascade broad learning for multi-modal material reco-gnition[J]. CAAI transactions on intelligent systems, 2020, 15(4): 787–794
[18] 杜艳玲, 王丽丽, 黄冬梅, 等. 融合密集特征金字塔的改进R2CNN海洋涡旋自动检测[J]. 智能系统学报, 2023, 18(2): 341–351
DU Yanling, WANG Lili, HUANG Dongmei, et al. Improved R2CNN ocean eddy automatic detection with a dense feature pyramid[J]. CAAI transactions on intelligent systems, 2023, 18(2): 341–351
[19] ZHAO Zhiyong, GUI Kang, WANG Peimao. Fabric defect detection based on cascade faster R-CNN[C]//Proceedings of the 4th International Conference on Computer Science and Application Engineering. Sanya: Association for Computing Machinery, 2020: 1-6.
[20] LI Feng. Bag of tricks for fabric defect detection based on Cascade R-CNN[J]. Textile research journal, 2021, 91(5-6): 599–612.
[21] JING Junfeng, ZHUO Dong, ZHANG Huanhuan, et al. Fabric defect detection using the improved YOLOv3 model[J]. Journal of engineered fibers and fabrics, 2020, 15: 1558–9250.
[22] ZHENG Liaomo, WANG Xiaojie, WANG Qi, et al. A fabric defect detection method based on improved yolov5[C]//2021 7th International Conference on Computer and Communications. Chengdu: Institute of Electrical and Electronics Engineers, 2021: 620-624.
[23] 伊力哈木·亚尔买买提. 一种新融合算法的维吾尔族人脸识别[J]. 智能系统学报, 2018, 13(3): 431–436
YILIHAMU·Yaermaimaiti. A new fusion algorithm for uyghur face recognition[J]. CAAI transactions on intelligent systems, 2018, 13(3): 431–436
[24] PANG Youwei, ZHAO Xiaoqi, XIANG Tianzhu, et al. Zoom in and out: A mixed-scale triplet network for camouflaged object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: Institute of Electrical and Electronics Engineers, 2022: 2160-2170.
[25] ZHANG Chenkai, FENG Shaozhe, WANG Xulongqi, et al. ZJU-leaper: a benchmark dataset for fabric defect detection and a comparative study[J]. IEEE transactions on artificial intelligence, 2020, 1(3): 219–232.
[26] ZHAO Ziyu, YANG Xiaoxia, ZHOU Yucheng, et al. Real-time detection of particleboard surface defects based on improved YOLOV5 target detection[J]. Scientific reports, 2021, 11(1): 1–15.
[27] WANG Chienyao, YEH I-hau, MARK Liaohongyuan. You only learn one representation: unified network for multiple tasks[EB/OL]. (2021-05-10)[2023-04-22]. https://arxiv.org/abs/:2105.04206.
[28] XU Shangliang, WANG Xinxin, LYU Wenyu, et al. PP-YOLOE: an evolved version of YOLO[EB/OL]. (2022-03-30)[2023-04-22]. https://arxiv.org/abs/:2203.16250.
[29] WANG Chienyao, BOCHKOVSKIY A, LIAO H Y M, et al. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Conference on Computer Vision and Pattern Recognition 2023. Vancouver: IEEE Computer Society, 2023: 7464-7475.
[30] LI Chuyi, LI Lulu, JIANG Hongliang, et al. YOLOv6: A single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2023-04-22]. https://arxiv.org/abs/:2209.02976.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems