[1]MO Hongwei,SUN Qi,SUN Peng,et al.Self-supervised pretraining detection of mammographic mass targets in breast[J].CAAI Transactions on Intelligent Systems,2024,19(5):1082-1091.[doi:10.11992/tis.202304032]
Copy

Self-supervised pretraining detection of mammographic mass targets in breast

References:
[1] 文帅, 李华兵. 放射学及放射组学在骨质疏松症的研究进展[J]. 中国CT和MRI杂志, 2023, 21(9): 181-183.
WEN Shuai, LI Huabing. Research progress of radiology and radiomics in osteoporosis[J]. Chinese journal of CT and MRI, 2023, 21(9): 181-183.
[2] 刘姣. 放射学检查方法在肿瘤诊断中的研究进展[J]. 中国医药指南, 2023, 21(7): 67-69.
LIU Jiao. Research progress of radiological examination methods in tumor diagnosis[J]. Guide of China medicine, 2023, 21(7): 67-69.
[3] 张政. 人工智能在皮肤病诊断中的应用[J]. 中国新通信, 2020, 22(24): 118-119.
ZHANG Zheng. Application of artificial intelligence in the diagnosis of dermatosis[J]. China new telecommunications, 2020, 22(24): 118-119.
[4] 于鹤, 赵稳兴. 计算机辅助诊断技术在病理学中的应用进展[J]. 诊断病理学杂志, 2018, 25(3): 223-226.
YU He, ZHAO Wenxing. Application progress of computer-aided diagnosis technology in pathology[J]. Chinese journal of diagnostic pathology, 2018, 25(3): 223-226.
[5] 徐立芳, 傅智杰, 莫宏伟. 基于改进的YOLOv3算法的乳腺超声肿瘤识别[J]. 智能系统学报, 2021, 16(1): 21-29.
XU Lifang, FU Zhijie, MO Hongwei. Tumor recognition in breast ultrasound images based on an improved YOLOv3 algorithm[J]. CAAI transactions on intelligent systems, 2021, 16(1): 21-29.
[6] DHUNGEL N, CARNEIRO G, BRADLEY A P. The automated learning of deep features for breast mass classification from mammograms[C]//Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2016: 106-114.
[7] KRITI, VIRMANI J, DEY N, et al. PCA-PNN and PCA-SVM based CAD systems for breast density classification[M]//Intelligent Systems Reference Library. Cham: Springer, 2015: 159-180.
[8] KETABI H, EKHLASI A, AHMADI H. A computer-aided approach for automatic detection of breast masses in digital mammogram via spectral clustering and support vector machine[J]. Physical and engineering sciences in medicine, 2021, 44(1): 277-290.
[9] SANNASI CHAKRAVARTHY S R, RAJAGURU H. Automatic detection and classification of mammograms using improved extreme learning machine with deep learning[J]. Innovation and research in biomedical engineering, 2022, 43(1): 49-61.
[10] GNANASEKARAN V S, JOYPAUL S, MEENAKSHI SUNDARAM P, et al. Deep learning algorithm for breast masses classification in mammograms[J]. IET image processing, 2020, 14(12): 2860-2868.
[11] AL-MASNI M A, AL-ANTARI M A, PARK J M, et al. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system[J]. Computer methods and programs in biomedicine, 2018, 157: 85-94.
[12] 韩昌芝, 俞璐, 李林, 等. 无源无监督迁移学习综述[J]. 信息技术与信息化, 2023(12): 46-51.
HAN Changzhi, YU Lu, LI Lin, et al. A summary of passive unsupervised transfer learning[J]. Information technology and informatization, 2023(12): 46-51.
[13] 邓佳丽, 龚海刚, 刘明. 基于目标检测的医学影像分割算法[J]. 电子科技大学学报, 2023, 52(2): 254-262.
DENG Jiali, GONG Haigang, LIU Ming. Medical image segmentation based on object detection[J]. Journal of university of electronic science and technology of China, 2023, 52(2): 254-262.
[14] WANG W C, AHN E, FENG Dagan, et al. A review of predictive and contrastive self-supervised learning for medical images[J]. Machine intelligence research, 2023, 20(4): 483-513.
[15] TSCHANNEN M, DJOLONGA J, RUBENSTEIN P K, et al. On mutual information maximization for representation learning[EB/OL]. (2019-07-31)[2023-04-15]. http://arxiv.org/abs/1907.13625.
[16] HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual infor-mation estimation and maximization[EB/OL]. (2018-08-20)[2023-04-15]. http://arxiv.org/abs/1808.06670.
[17] TIAN Yonglong, KRISHNAN D, ISOLA P. Contrastive multiview coding[C]//European Conference on Computer Vision. Cham: Springer, 2020: 776-794.
[18] AGRAWAL P, CARREIRA J, MALIK J. Learning to see by moving[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 37-45.
[19] CHEN Xinlei, HE Kaiming. Exploring simple Siamese representation learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 15745-15753.
[20] CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning. Vienna: PMLR, 2020: 1597-1607.
[21] HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9726-9735.
[22] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent: a new approach to self-supervised Learning[EB/OL]. (2020-06-13)[2023-04-15]. http://arxiv.org/abs/2006.07733.
[23] CHEN Xinlei, FAN Haoqi, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[EB/OL]. (2020-03-09)[2023-04-15]. http://arxiv.org/abs/2003.04297.
[24] WANG C, CHAN S C. A new hand gesture recognition algorithm based on joint color-depth Superpixel Earth Mover’s Distance[C]//2014 4th International Workshop on Cognitive Information Processing. Copenhagen: IEEE, 2014: 1-6.
[25] NIKOLENTZOS G, MELADIANOS P, VAZIRGIANNIS M. Matching node embeddings for graph similarity[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco: AAAI. 2017: 2429-2435.
[26] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[27] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[28] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635.
[29] HEATH M, BOWYER K, KOPANS D, et al. The digital database for screening mammography[M]. Nijmegen: Springer, 2001: 212–218.
[30] HEATH M, BOWYER K, KOPANS D, et al. Current status of the digital database for screening mammography[M]. Dordrecht: Springer, 1998: 457-460.
[31] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[32] FEI-FEI L, DENG J, LI K. ImageNet: Constructing a large-scale image database[J]. Journal of vision, 2010, 9(8): 1037.
[33] GRILL J B , STRUB F , ALTCHé F, et al. Bootstrap your own latent: a new approach to self-supervised learning[EB/OL]. (2020-06-13)[2023-04-15]. https://arxiv.org/abs/2006.07733.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems