[1]CHENG Deqiang,ZHU Xingguang,KOU Qiqi,et al.Image super-resolution reconstruction by fusing layered features with residual distillation connections[J].CAAI Transactions on Intelligent Systems,2023,18(6):1173-1184.[doi:10.11992/tis.202304011]
Copy

Image super-resolution reconstruction by fusing layered features with residual distillation connections

References:
[1] CHENG Deqiang, LI Jiahan, KOU Qiqi, et al. H-net: unsupervised domain adaptation person re-identification network based on hierarchy[J]. Image and vision computing, 2022, 124: 104493.
[2] 韩璐, 毕晓君. 多尺度特征融合网络的视网膜OCT图像分类[J]. 智能系统学报, 2022, 17(2): 360–367
HAN Lu, BI Xiaojun. Retinal optical coherence tomography image classification based on multiscale feature fusion[J]. CAAI transactions on intelligent systems, 2022, 17(2): 360–367
[3] 毕晓君, 潘梦迪. 基于生成对抗网络的机载遥感图像超分辨率重建[J]. 智能系统学报, 2020, 15(1): 74–83
BI Xiaojun, PAN Mengdi. Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J]. CAAI transactions on intelligent systems, 2020, 15(1): 74–83
[4] 王宇昊, 王铸. 卫星遥感影像特定目标的超分辨率重建算法[J]. 遥感信息, 2022, 37(5): 108–115
WANG Yuhao, WANG Zhu. Super-resolution reconstruction algorithm for specific target in satellite remote sensing imagery[J]. Remote sensing information, 2022, 37(5): 108–115
[5] 程德强, 陈杰, 寇旗旗, 等. 融合层次特征和注意力机制的轻量化矿井图像超分辨率重建方法[J]. 仪器仪表学报, 2022, 43(8): 73–84
CHENG Deqiang, CHEN Jie, KOU Qiqi, et al. Lightweight super-resolution reconstruction method based on hierarchical features fusion and attention mechanism for mine image[J]. Chinese journal of scientific instrument, 2022, 43(8): 73–84
[6] TAO Hongjiu, TANG Xinjian, LIU Jian, et al. Superresolution remote sensing image processing algorithm based on wavelet transform and interpolation[J]. Image processing and pattern recognition in remote sensing, 2003, 4898: 259–263.
[7] CHENG Deqiang, CHEN Liangliang, LYU Chen, et al. Light-guided and cross-fusion U-net for anti-illumination image super-resolution[J]. IEEE transactions on circuits and systems for video technology, 2022, 32(12): 8436–8449.
[8] WANG Yetong, XING Kongduo, WANG Baji, et al. Image super-resolution reconstruction method based on residual mechanism[J]. Journal of electronic imaging, 2022, 31(3): 033010.
[9] 王凡超, 丁世飞. 基于广泛激活深度残差网络的图像超分辨率重建[J]. 智能系统学报, 2022, 17(2): 440–446
WANG Fanchao, DING Shifei. Image super-resolution reconstruction based on widely activated deep residual networks[J]. CAAI transactions on intelligent systems, 2022, 17(2): 440–446
[10] YANG Shuyuan, LIU Zhizhou, WANG Min, et al. Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction[J]. Neurocomputing, 2011, 74(17): 3193–3203.
[11] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision. Cham: Springer, 2014: 184-199.
[12] DONG Chao, LOY C C, TANG Xiaoou. Accelerating the super-resolution convolutional neural network[EB/OL]. (2016-08-01)[2023-04-06]. https://arxiv.org/abs/1608.00367.
[13] SHI Wenzhe, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883.
[14] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[15] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1646-1654.
[16] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1132-1140.
[17] SEGU M, TONIONI A, TOMBARI F. Batch normalization embeddings for deep domain generalization[J]. Pattern recognition, 2023, 135: 109115.
[18] ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]//European Conference on Computer Vision. Cham: Springer, 2018: 294-310.
[19] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2472-2481.
[20] CHEN Liangliang, KOU Qiqi, CHENG Deqiang, et al. Content-guided deep residual network for single image super-resolution[J]. Optik, 2020, 202: 163678.
[21] 程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报, 2021, 26(3): 605–618
CHENG Deqiang, GUO Xin, CHEN Liangliang, et al. Image super-resolution reconstruction from multi-channel recursive residual network[J]. Journal of image and graphics, 2021, 26(3): 605–618
[22] HARIS M, SHAKHNAROVICH G, UKITA N. Deep back-projection networks for super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1664-1673.
[23] PUROHIT K, MANDAL S, RAJAGOPALAN A N. Mixed-dense connection networks for image and video super-resolution[J]. Neurocomputing, 2020, 398: 360–376.
[24] FARAMARZI A, AHMADYFARD A, KHOSRAVI H. Adaptive image super-resolution algorithm based on fractional Fourier transform[J]. Image analysis & stereology, 2022, 41(2): 133–144.
[25] AHN H, YIM C. Convolutional neural networks using skip connections with layer groups for super-resolution image reconstruction based on deep learning[J]. Applied sciences, 2020, 10(6): 1959.
[26] LIU Jie, TANG Jie, WU Gangshan. Residual feature distillation network for lightweight image super-resolution[M]//Computer Vision-ECCV 2020 Workshops. Cham: Springer International Publishing, 2020: 41-55.
[27] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the British Machine Vision Conference 2012. Surrey: British Machine Vision Association, 2012.
[28] ROMANO Y, PROTTER M, ELAD M. Single image interpolation via adaptive nonlocal sparsity-based modeling[J]. IEEE transactions on image processing, 2014, 23(7): 3085–3098.
[29] LIU Yun, CHENG Mingming, HU Xiaowei, et al. Richer convolutional features for edge detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(8): 1939–1946.
[30] HUANG Jiabin, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 5197-5206.
[31] MEI Yiqun, FAN Yuchen, ZHOU Yuqian, et al. Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 5689-5698.
[32] MEI Yiqun, FAN Yuchen, ZHOU Yuqian. Image super-resolution with non-local sparse attention[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 3516-3525.
[33] WANG Yan. Edge-enhanced feature distillation network for efficient super-resolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 776-784.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems