[1]QIN Minmin,LIU Lifang,QI Xiaogang.Hybrid genetic long-nosed raccoon optimization algorithm for maintenance resource allocation and scheduling[J].CAAI Transactions on Intelligent Systems,2023,18(6):1322-1335.[doi:10.11992/tis.202303035]
Copy

Hybrid genetic long-nosed raccoon optimization algorithm for maintenance resource allocation and scheduling

References:
[1] 齐小刚, 张仲华, 宋卫星, 等. 多中心维修任务分配研究现状[J]. 智能系统学报, 2022, 17(3): 448–458
QI Xiaogang, ZHANG Zhonghua, SONG Weixing, et al. Research status of multicenter maintenance task assignment[J]. CAAI transactions on intelligent systems, 2022, 17(3): 448–458
[2] ERYILMAZ S, YALCIN F. The number of failed components upon system failure when the lifetimes are discretely distributed[J]. Reliability engineering & system safety, 2022, 225: 108632.
[3] 鄢超波, 张雷. 串行生产线中机器维修工人的任务分配问题研究[J]. 自动化学报, 2021, 47(11): 2578–2584
YAN Chaobo, ZHANG Lei. Formulation and solution methodology for repairman allocation problem in serial production lines[J]. Acta automatica sinica, 2021, 47(11): 2578–2584
[4] DZULKIFLI N, SARBINI N N, IBRAHIM I S, et al. Review on maintenance issues toward building maintenance management best practices[J]. Journal of building engineering, 2021, 44: 102985.
[5] GBALLOU Y T, KIDJEGBO A T, TIECOURA Y, et al. Assessment of the performance of a buffer management system to improve high priority message delivery time limit[J]. International journal of advanced research, 2021, 9(1): 1092–1104.
[6] SHI Long, WANG Taotao, LI Jun, et al. Pooling is not favorable: decentralize mining power of PoW blockchain using age-of-work[J]. IEEE transactions on cloud computing, 2023, 11(3): 2756–2769.
[7] TAN Xin, ZHOU Minghui. Scaling open source software communities: challenges and practices of decentralization[J]. IEEE software, 2022, 39(1): 70–75.
[8] 苏喜生, 刘楠, 贺德富, 等. 一种后勤保障能力评估系统: CN115392651A[P]. 2022-11-25.
[9] GARCíA-NIEVES J D, PONZ-TIENDA J L, SALCEDO-BERNAL A, et al. The multimode resource-constrained project scheduling problem for repetitive activities in construction projects[J]. Computer-aided civil and infrastructure engineering, 2018, 33(8): 655–671.
[10] 李猛. 面向自主维修保障的资源调度与优化技术研究[D]. 西安电子科技大学, 2021.
LI Meng. Research on resource scheduling and optimization technology for autonomous maintenance support [D]. Xi’an: Xidian University, 2021.
[11] OZTEMEL E, SELAM A A. Bees Algorithm for multi-mode, resource-constrained project scheduling in molding industry[J]. Computers & industrial engineering, 2017, 112: 187–196.
[12] KRISHNAKUMAR A, ARDA S E, GOKSOY A A, et al. Runtime task scheduling using imitation learning for heterogeneous many-core systems[J]. IEEE transactions on computer-aided design of integrated circuits and systems, 2020, 39(11): 4064–4077.
[13] KOSZTYáN Z T, SZALKAI I. Multimode resource-constrained project scheduling in flexible projects[J]. Journal of global optimization, 2020, 76(1): 211–241.
[14] CHAKRABORTTY R K, ABBASI A, RYAN M J. Multi-mode resource-constrained project scheduling using modified variable neighborhood search heuristic[J]. International transactions in operational research, 2020, 27(1): 138–167.
[15] ZAMAN F, ELSAYED S M, SAKER R, et al. Resource constrained project scheduling with dynamic disruption recovery[J]. IEEE access, 2020, 8: 144866–144879.
[16] 田启华, 黄佳康, 明文豪, 等. 资源约束下产品开发任务调度的多目标优化[J]. 计算机集成制造系统, 2022, 28(2): 564–573
TIAN Qihua, HUANG Jiakang, MING Wenhao, et al. Multi-objective optimization of product development task scheduling under resource constraints[J]. Computer integrated manufacturing systems, 2022, 28(2): 564–573
[17] 陆志强, 石婷. 考虑资源空窗期的资源投入问题的建模与优化[J]. 上海交通大学学报, 2019, 53(5): 600–609
LU Zhiqiang, SHI Ting. Modeling and optimization of resource investment problem with resource vacations[J]. Journal of Shanghai Jiao Tong University, 2019, 53(5): 600–609
[18] 谢芳, 李洪波, 柏庆国. 随机多模式资源受限项目调度[J]. 中国管理科学, 2022, 30(10): 155–164
XIE Fang, LI Hongbo, BAI Qingguo. Stochastic multi-mode resource-constrained project scheduling[J]. Chinese journal of management science, 2022, 30(10): 155–164
[19] 张宇哲, 董兴业, 周正. 求解资源受限项目调度问题的分支定价算法[J]. 计算机科学, 2022, 49(12): 274–282
ZHANG Yuzhe, DONG Xingye, ZHOU Zheng. Branch & price algorithm for resource-constrained project scheduling problem[J]. Computer science, 2022, 49(12): 274–282
[20] 尤建新. 多模式资源受限项目调度问题的混合优化算法研究[C]//第十四届中国管理科学学术年会. 济南: [s. n. ], 2012: 159-164.
You Jianxin. Research on hybrid optimization algorithms for multimodal resource constrained project scheduling problems[C]//The 14th China Annual Conference of Management Science. Jinan: [s. n. ], 2012: 159-164.
[21] DEHGHANI M, MONTAZERI Z, TROJOVSKá E, et al. Coati Optimization Algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-based systems, 2023, 259: 110011.
[22] HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge, Mass.: MIT Press, 1992.
[23] QIN Haoxiang, HAN Yuyan, LIU Yiping, et al. A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints[J]. Expert systems with applications, 2022, 201: 117256.
[24] KOLISCH R, SPRECHER A. PSPLIB - A project scheduling problem library[J]. European journal of operational research, 1997, 96(1): 205–216.
[25] SCHWINDT C. Generation of resource-constrained project scheduling problems subject to temporal constraints[EB/OL]. (2018-04-05) [2023-03-25].https://publikationen.bibliothek.kit.edu/78698.
[26] WAUTERS T, KINABLE J, SMET P, et al. The multi-mode resource-constrained multi-project scheduling problem[J]. Journal of scheduling, 2016, 19(3): 271–283.
[27] DANG Qianlong, XU Wei, YUAN Yangfei. A dynamic resource allocation strategy with reinforcement learning for multimodal multi-objective optimization[J]. Machine intelligence research, 2022, 19(2): 138–152.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems