[1]LI Qiang,WU Zhengbiao,GUAN Xin.Piano fingering generation with deep musical score feature fusion[J].CAAI Transactions on Intelligent Systems,2023,18(6):1287-1294.[doi:10.11992/tis.202303018]
Copy

Piano fingering generation with deep musical score feature fusion

References:
[1] PURWINS H, LI Bo, VIRTANEN T, et al. Deep learning for audio signal processing[J]. IEEE journal of selected topics in signal processing, 2019, 13(2): 206–219.
[2] PARNCUTT R, SLOBODA J A, CLARKE E F, et al. An ergonomic model of keyboard fingering for melodic fragments[J]. Music perception, 1997, 14(4): 341–382.
[3] BALLIAUW M, HERREMANS D, PALHAZI CUERVO D, et al. A variable neighborhood search algorithm to generate piano fingerings for polyphonic sheet music[J]. International transactions in operational research, 2017, 24(3): 509–535.
[4] AL K, ALI A. A simple algorithm for automatic generation of polyphonic piano fingerings[C]//The International Society for Music Information Retrieval. Vienna: ISMIR, 2007.
[5] XIAO Yisheng, WU Lijun, GUO Junliang, et al. A survey on non-autoregressive generation for neural machine translation and beyond[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(10): 11407–11427.
[6] LI Jing, SUN Aixin, HAN Jianglei, et al. A survey on deep learning for named entity recognition[J]. IEEE transactions on knowledge and data engineering, 2022, 34(1): 50–70.
[7] LI Jing, HAN Peng, REN Xiangnan, et al. Sequence labeling with meta-learning[J]. IEEE transactions on knowledge and data engineering, 2023, 35(3): 3072–3086.
[8] YONEBAYASHI Y, KAMEOKA H, SAGAYAMA S. Automatic decision of piano fingering based on hidden Markov models[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence. Hyderabad: ACM, 2007: 2915-2921.
[9] NAKAMURA E, ONO N, SAGAYAMA S. Merged-output HMM for piano fingering of both hands[C]//Proceedings of the 15th International Society for Conference on Music Information Retrieval. Taipei: ISMIR, 2014: 531-536
[10] SAHA S, BOVOLO F, BRUZZONE L. Change detection in image time-series using unsupervised LSTM[J]. IEEE geoscience and remote sensing letters, 2022, 19: 1–5.
[11] WEI Yuanyuan, JANG-JACCARD J, XU Wen, et al. LSTM-autoencoder-based anomaly detection for indoor air quality time-series data[J]. IEEE sensors journal, 2023, 23(4): 3787–3800.
[12] YAN Jingyang, DIMEO P, SUN Lu, et al. LSTM-based model predictive control of piezoelectric motion stages for high-speed autofocus[J]. IEEE transactions on industrial electronics, 2023, 70(6): 6209–6218.
[13] 于润羽, 杜军平, 薛哲, 等. 面向科技学术会议的命名实体识别研究[J]. 智能系统学报, 2022, 17(1): 50–58
YU Runyu, DU Junping, XUE Zhe, et al. Research on named entity recognition for scientific and technological conferences[J]. CAAI transactions on intelligent systems, 2022, 17(1): 50–58
[14] 王一成, 万福成, 马宁. 融合多层次特征的中文语义角色标注[J]. 智能系统学报, 2020, 15(1): 107–113
WANG Yicheng, WAN Fucheng, MA Ning. Chinese semantic role labeling with multi-level linguistic features[J]. CAAI transactions on intelligent systems, 2020, 15(1): 107–113
[15] SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]//2019 IEEE International Conference on Big Data (Big Data). Los Angeles: IEEE, 2020: 3285-3292.
[16] WANG Jianyou, XUE M, CULHANE R, et al. Speech emotion recognition with dual-sequence LSTM architecture[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020: 6474-6478.
[17] LIU Gang, GUO Jiabao. Bidirectional LSTM with attention mechanism and convolutional layer for text classification[J]. Neurocomputing, 2019, 337: 325–338.
[18] NAKAMURA E, SAITO Y, YOSHII K. Statistical learning and estimation of piano fingering[J]. Information sciences, 2020, 517: 68–85.
[19] RAMONEDA P, JEONG D, NAKAMURA E, et al. Automatic piano fingering from partially annotated scores using autoregressive neural networks[C]//Proceedings of the 30th ACM International Conference on Multimedia. Lisboa: ACM, 2022: 6502-6510.
[20] STEWART M. Automatic piano fingerings estimation using recurrent neural networks[EB/OL]. (2021-12-29)[2023-03-25].https://api.semanticscholar.org/CorpusID:252005276.
[21] CHANG C C. Fundamentals Of piano practice[M/OL]. [S. l.]: CreateSpace Independent Publishing Platform, 2007.
[22] TITON J T, COOLEY T J. Worlds of music: an introduction to the music of the world’s peoples[M]. Array Boston: Cengage Learning, 2016
[23] CHEN Yichen, HUANG S F, LEE H Y, et al. Audio Word2Vec: sequence-to-sequence autoencoding for unsupervised learning of audio segmentation and representation[J]. IEEE/ACM transactions on audio, speech, and language processing, 2019, 27(9): 1481–1493.
[24] AMIN S, UDDIN M I, ALI ZEB M, et al. Detecting dengue/flu infections based on tweets using LSTM and word embedding[J]. IEEE access, 2020, 8: 189054–189068.
[25] QIU Xipeng, SUN Tianxiang, XU Yige, et al. Pre-trained models for natural language processing: a survey[J]. Science China technological sciences, 2020, 63(10): 1872–1897.
[26] YU Yong, SI Xiaosheng, HU Changhua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation, 2019, 31(7): 1235–1270.
[27] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735–1780.
[28] VAN HOUDT G, MOSQUERA C, NáPOLES G. A review on the long short-term memory model[J]. Artificial intelligence review, 2020, 53(8): 5929–5955.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems