[1]XING Tianyi,GUO Maozu,CHEN Jiadong,et al.Detection of abnormal crowd behavior based on spatial-temporal adversarial variational autoencoder[J].CAAI Transactions on Intelligent Systems,2023,18(5):994-1004.[doi:10.11992/tis.202303002]
Copy

Detection of abnormal crowd behavior based on spatial-temporal adversarial variational autoencoder

References:
[1] LI Weixin, MAHADEVAN V, VASCONCELOS N. Anomaly detection and localization in crowded scenes[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(1): 18-32.
[2] XIE Shaoci, ZHANG Xiaohong, CAI Jing. Video crowd detection and abnormal behavior model detection based on machine learning method[J]. Neural computing and applications, 2019, 31(1): 175-184.
[3] HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 733?742.
[4] CHONG Y S, TAY Y H. Abnormal event detection in videos using spatiotemporal autoencoder[C]//CONG F, LEUNG A, WEI Q. International Symposium on Neural Networks. Cham: Springer, 2017: 189?196.
[5] LUO Weixin, LIU Wen, GAO Shenghua. Remembering history with convolutional LSTM for anomaly detection[C]//2017 IEEE International Conference on Multimedia and Expo. Hong Kong: IEEE, 2017: 439?444.
[6] 杨彪, 曹金梦, 张御宇, 等. 加权卷积自编码长短期记忆网络人群异常检测方法: CN108805015B[P]. 2021-09-03.
YANG Biao, CAO Jinmeng, ZHANG Yuyu, et al. Weighted convolutional autoencoder-long short-term memory network-based crowd anomaly detection method: CN108805015B[P]. 2021-09-03.
[7] YAN Shiyang, SMITH J S, LU Wenjin, et al. Abnormal event detection from videos using a two-stream recurrent variational autoencoder[J]. IEEE transactions on cognitive and developmental systems, 2020, 12(1): 30-42.
[8] LIU Jie, SONG Kechen, FENG Mingzheng, et al. Semi-supervised anomaly detection with dual prototypes autoencoder for industrial surface inspection[J]. Optics and lasers in engineering, 2021, 136: 106324.
[9] LIU Wen, LUO Weixin, LIAN Dongze, et al. Future frame prediction for anomaly detection-A new baseline[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6536?6545.
[10] DONG Fei, ZHANG Yu, NIE Xiushan. Dual discriminator generative adversarial network for video anomaly detection[J]. IEEE access, 2020, 8: 88170-88176.
[11] NGUYEN T N, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 1273?1283.
[12] MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[EB/OL]. (2015-11-18)[2020-01-01]. https://arxiv.org/abs/1511.05644.
[13] 唐浩漾, 张小媛, 王燕, 等. 基于生成对抗网络的人体异常行为检测算法[J]. 西安邮电大学学报, 2020, 25(3): 92-97
TANG Haoyang, ZHANG Xiaoyan, WANG Yan, et al. Human abnormal behaviour detection algorithm based on generative adversarial nets[J]. Journal of Xi’an University of Posts and Telecommunications, 2020, 25(3): 92-97
[14] LI Nanjun, CHANG Faliang, LIU Chunsheng. Spatial-temporal cascade autoencoder for video anomaly detection in crowded scenes[J]. IEEE transactions on multimedia, 2021, 23: 203-215.
[15] 张冀, 曹艺, 王亚茹, 等. 融合VAE和StackGAN的零样本图像分类方法[J]. 智能系统学报, 2022, 17(3): 593-601
ZHANG Ji, CAO Yi, WANG Yaru, et al. Zero-shot image classification method combining VAE and StackGAN[J]. CAAI transactions on intelligent systems, 2022, 17(3): 593-601
[16] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 14360?14369.
[17] MARKOVITZ A, SHARIR G, FRIEDMAN I, et al. Graph embedded pose clustering for anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10536?10544.
[18] GOYAL S, RAGHUNATHAN A, JAIN M, et al. DROCC: Deep robust one-class classification[C]//International Conference on Machine Learning. [S.l.]: PMLR, 2020: 3711?3721.
[19] LI Chunliang, SOHN K, YOON J, et al. CutPaste: self-supervised learning for anomaly detection and localization[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9659?9669.
[20] RUDOLPH M, WEHRBEIN T, ROSENHAHN B, et al. Fully convolutional cross-scale-flows for image-based defect detection[EB/OL]. (2021-10-06)[2022-12-01]. https://arxiv.org/abs/2110.02855.
[21] CARRARA F, AMATO G, BROMBIN L, et al. Combining GANs and AutoEncoders for efficient anomaly detection[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 3939?3946.
[22] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[23] UMN. University of minnesota dataset for detection of unusual crowd activity[EB/OL]. (2006-05-30)[2020-01-01]. http://mha.cs.umn.edu/proj_events.shtml#crowd.
[24] WANG Lin, ZHOU Fuqiang, LI Zuoxin, et al. Abnormal event detection in videos using hybrid spatio-temporal autoencoder[C]// 25th IEEE International Conference on Image Processing. Athens: IEEE, 2018: 2276?2280.
[25] AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special lecture on IE, 2015, 2(1): 1-18.
[26] DAI Feng, LIU Hao, MA Yike, et al. Dense scale network for crowd counting[EB/OL]. (2019-06-24)[2020-01-01]. https://arxiv.org/abs/1906.09707.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems