[1]LYU Li,CHEN Wei,XIAO Renbin,et al.Density peak clustering algorithm based on weighted reverse nearest neighbor for uneven density datasets[J].CAAI Transactions on Intelligent Systems,2024,19(1):165-175.[doi:10.11992/tis.202212015]
Copy

Density peak clustering algorithm based on weighted reverse nearest neighbor for uneven density datasets

References:
[1] SZALONTAI B, DEBRECZENY M, FINTOR K, et al. SVD-clustering, a general image-analyzing method explained and demonstrated on model and Raman micro-spectroscopic maps[J]. Scientific reports, 2020, 10: 4238.
[2] 程鹏宇, 赵嘉, 韩龙哲, 等. 双向多尺度LSTM的短时温度预测[J]. 江西师范大学学报(自然科学版), 2022, 46(2): 134–139
CHENG Pengyu, ZHAO Jia, HAN Longzhe, et al. The short-term temperature prediction based on bidirectional multi-scale LSTM[J]. Journal of Jiangxi normal university (natural science edition), 2022, 46(2): 134–139
[3] LI Chunlin, BAI Jingpan. Automatic content extraction and time-aware topic clustering for large-scale social network on cloud platform[J]. The journal of supercomputing, 2019, 75(5): 2890–2924.
[4] MIRZAL A. Statistical analysis of microarray data clustering using NMF, spectral clustering, kmeans, and GMM[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2022, 19(2): 1173–1192.
[5] ZHAO Yuan, FANG Zhaoyu, LIN Cuixiang, et al. RFCell: a gene selection approach for scRNA-seq clustering based on permutation and random forest[J]. Frontiers in genetics, 2021, 12: 665843.
[6] TAVALLALI P, TAVALLALI P, SINGHAL M. K-means tree: an optimal clustering tree for unsupervised learning[J]. The journal of supercomputing, 2021, 77(5): 5239–5266.
[7] CHU Zhenyue, WANG Weifeng, LI Bangzhun, et al. An operation health status monitoring algorithm of special transformers based on BIRCH and Gaussian cloud methods[J]. Energy reports, 2021, 7: 253–260.
[8] BUREVA V, POPOV S, TRANEVA V, et al. Generalized net model of cluster analysis using CLIQUE: clustering in quest[J]. International journal bioautomation, 2019, 23(2): 131–138.
[9] REN Jie, WANG Zulin, XU Mai, et al. An EM-based user clustering method in non-orthogonal multiple access[J]. IEEE transactions on communications, 2019, 67(12): 8422–8434.
[10] ZHU Qidan, TANG Xiangmeng, ELAHI A. Application of the novel harmony search optimization algorithm for DBSCAN clustering[J]. Expert systems with applications, 2021, 178: 115054.
[11] ZHANG En, LI Huimin, HUANG Yuchen, et al. Practical multi-party private collaborative k-means clustering[J]. Neurocomputing, 2022, 467: 256–265.
[12] ZHANG Tian, RAMAKRISHNAN R, LIVNY M. Birch[J]. ACM SIGMOD record, 1996, 25(2): 103–114.
[13] AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data for data mining applications[C]//Proceedings of the 1998 ACM SIGMOD international conference on Management of data. Seattle: ACM, 1998: 94?105.
[14] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the royal statistical society:series B (methodological), 1977, 39(1): 1–22.
[15] ESTER M. A density-based Algorithm for discovering clusters in large spatial databases with noise[C]//KDD ’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Oregon: AAAI Press, 1996: 226?231.
[16] RODRIGUEZ A, LAIO A. Machine learning. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496.
[17] 吕莉, 朱梅子, 康平, 等. 二阶K近邻和多簇合并的密度峰值聚类算法[J/OL]. 吉林大学学报(工学版). (2023?01?31)[2023?07?13]. https://kns.cnki.net/kcms/detail/22.1341.t.20230131.1100. 005. html.
LYU Li, ZHU Meizi, KANG Ping, et al. Density peaks clustering with second-order K-nearest neighbors and multi-cluster merging[J/OL]. Journal of Jilin University (engineering and technology edition). (2023?01?31) [2023?07?13]. https://kns.cnki.net/kcms/detail/22.1341.t.20230131.1100.005.html.
[18] SUN Lin, QIN Xiaoying, DING Weiping, et al. Nearest neighbors-based adaptive density peaks clustering with optimized allocation strategy[J]. Neurocomputing, 2022, 473: 159–181.
[19] 赵嘉, 陈磊, 吴润秀, 等. K近邻和加权相似性的密度峰值聚类算法[J]. 控制理论与应用, 2022, 39(12): 2349–2357
ZHAO Jia, CHEN Lei, WU Runxiu, et al. Density peaks clustering algorithm with K-nearest neighbors and weighted similarity[J]. Control theory & applications, 2022, 39(12): 2349–2357
[20] 吴润秀, 尹士豪, 赵嘉, 等. 基于相对密度估计和多簇合并的密度峰值聚类算法[J]. 控制与决策, 2023, 38(4): 1047–1055
WU Runxiu, YIN Shihao, ZHAO Jia, et al. Density peaks clustering based on relative density estimating and multi cluster merging[J]. Control and decision, 2023, 38(4): 1047–1055
[21] DING Jiajun, HE Xiongxiong, YUAN Junqing, et al. Community detection by propagating the label of center[J]. Physica A:statistical mechanics and its applications, 2018, 503: 675–686.
[22] 赵嘉, 王刚, 吕莉, 等. 面向流形数据的测地距离与余弦互逆近邻密度峰值聚类算法[J]. 电子学报, 2022, 50(11): 2730–2737
ZHAO Jia, WANG Gang, LYU Li, et al. Density peaks clustering algorithm based on geodesic distance and cosine mutual reverse nearest neighbors for manifold datasets[J]. Acta electronica sinica, 2022, 50(11): 2730–2737
[23] BRYANT A, CIOS K. RNN-DBSCAN: a density-based clustering algorithm using reverse nearest neighbor density estimates[J]. IEEE transactions on knowledge and data engineering, 2017, 30(6): 1109–1121.
[24] 陈磊, 吴润秀, 李沛武, 等. 加权K近邻和多簇合并的密度峰值聚类算法[J]. 计算机科学与探索, 2022, 16(9): 2163–2176
CHEN Lei, WU Runxiu, LI Peiwu, et al. Weighted K-nearest neighbors and multi-cluster merge density peaks clustering algorithm[J]. Journal of frontiers of computer science and technology, 2022, 16(9): 2163–2176
[25] ZHAO Jia, TANG Jingjing, SHI Aiye, et al. Improved density peaks clustering based on firefly algorithm[J]. International journal of bio-inspired computation, 2020, 15(1): 24.
[26] DU Mingjing, DING Shifei, XUE Yu. A robust density peaks clustering algorithm using fuzzy neighborhood[J]. International journal of machine learning and cybernetics, 2018, 9(7): 1131–1140.
[27] YU Donghua, LIU Guojun, GUO Maozu, et al. Density peaks clustering based on weighted local density sequence and nearest neighbor assignment[J]. IEEE access, 2019, 7: 34301–34317.
[28] VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Journal of machine learning research, 2010, 11: 2837–2854.
[29] FOWLKES E B, MALLOWS C L. A method for comparing two hierarchical clusterings[J]. Journal of the American statistical association, 1983, 78(383): 553–569.
[30] ZIMMERMAN D W, ZUMBO B D. Relative power of the wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks[J]. The journal of experimental education, 1993, 62(1): 75–86.
[31] 肖人彬. 面向复杂系统的群集智能[M]. 北京: 科学出版社, 2013.
[32] 肖人彬, 冯振辉, 王甲海. 群体智能的概念辨析与研究进展及应用分析[J]. 南昌工程学院学报, 2022, 41(1): 1–21
XIAO Renbin, FENG Zhenhui, WANG Jiahai. Collective intelligence: conception, research progresses and application analyses[J]. Journal of Nanchang institute of technology, 2022, 41(1): 1–21
[33] 张曦, 李璠, 付雪峰, 等. 随机学习萤火虫算法优化的模糊软子空间聚类算法[J]. 江西师范大学学报(自然科学版), 2021, 45(2): 137–144
ZHANG Xi, LI Fan, FU Xuefeng, et al. The fuzzy soft subspace clustering algorithm optimized by random learning firefly algorithm[J]. Journal of Jiangxi normal university (natural science edition), 2021, 45(2): 137–144
[34] 肖人彬, 陈峙臻. 从群智能优化到群智能进化[J]. 南昌工程学院学报, 2023, 42(1): 1–10
XIAO Renbin, CHEN Zhizhen. From swarm intelligence optimization to swarm intelligence evolution[J]. Journal of Nanchang institute of technology, 2023, 42(1): 1–10
[35] 赵嘉, 谢智峰, 吕莉, 等. 深度学习萤火虫算法[J]. 电子学报, 2018, 46(11): 2633–2641
ZHAO Jia, XIE Zhifeng, LYU Li, et al. Firefly algorithm with deep learning[J]. Acta electronica sinica, 2018, 46(11): 2633–2641
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems