[1]PU Xingcheng,XIAN Wenjie,NIE Zhuang.Three-dimensional path planning of AUV based on improved ant colony optimization algorithm[J].CAAI Transactions on Intelligent Systems,2024,19(3):627-634.[doi:10.11992/tis.202211038]
Copy

Three-dimensional path planning of AUV based on improved ant colony optimization algorithm

References:
[1] 吴有生, 赵羿羽, 郎舒妍, 等. 智能无人潜水器技术发展研究[J]. 中国工程科学, 2020, 22(6): 26–31
WU Yousheng, ZHAO Yiyu, LANG Shuyan, et al. Development of autonomous underwater vehicles technology[J]. Strategic study of CAE, 2020, 22(6): 26–31
[2] CONSTABLE S, KOWALCZYK P, BLOOMER S. Measuring marine self-potential using an autonomous underwater vehicle[J]. Geophysical journal international, 2018, 215(1): 49–60.
[3] 封锡盛, 李一平, 徐会希, 等. 深海自主水下机器人发展及其在资源调查中的应用[J]. 中国有色金属学报, 2021, 31(10): 2746–2756
FENG Xisheng, LI Yiping, XU Huixi, et al. Development of deep-sea autonomous underwater vehicle and its applications in resource survey[J]. The Chinese journal of nonferrous metals, 2021, 31(10): 2746–2756
[4] WU Jiehong, SONG Chengxin, MA Jian, et al. Reinforcement learning and particle swarm optimization supporting real-time rescue assignments for multiple autonomous underwater vehicles[J]. IEEE transactions on intelligent transportation systems, 2022, 23(7): 6807–6820.
[5] 钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(上): 美军用无人系统发展规划分析解读[J]. 水下无人系统学报, 2017, 25(2): 1–30
QIAN Dong, ZHAO Jiang, YANG Yun. Development trend of military UUV(Ⅰ): a review of U. S. military unmanned system development plan[J]. Journal of unmanned undersea systems, 2017, 25(2): 1–30
[6] 刘成菊, 韩俊强, 安康. 基于改进RRT算法的RoboCup机器人动态路径规划[J]. 机器人, 2017, 39(1): 8–15
LIU Chengju, HAN Junqiang, AN Kang. Dynamic path planning based on an improved RRT algorithm for RoboCup robot[J]. Robot, 2017, 39(1): 8–15
[7] 张伟民, 付仕雄. 基于改进RRT*算法的移动机器人路径规划[J]. 华中科技大学学报(自然科学版), 2021, 49(1): 31–36
ZHANG Weimin, FU Shixiong. Mobile robot path planning based on improved RRT* algorithm[J]. Journal of Huazhong university of science and technology (natural science edition), 2021, 49(1): 31–36
[8] LIU Chenguang, MAO Qingzhou, CHU Xiumin, et al. An improved A-star algorithm considering water current, traffic separation and berthing for vessel path planning[J]. Applied sciences, 2019, 9(6): 1057.
[9] 赵晓, 王铮, 黄程侃, 等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903–910
ZHAO Xiao, WANG Zheng, HUANG Chengkan, et al. Mobile robot path planning based on an improved A* algorithm[J]. Robot, 2018, 40(6): 903–910
[10] 史久根, 刘春霞, 席海强. CA模型下的改进D*路径规划算法[J]. 电子测量与仪器学报, 2016, 30(1): 30–37
SHI Jiugen, LIU Chunxia, XI Haiqiang. Improved D* path planning algorithm based on CA model[J]. Journal of electronic measurement and instrumentation, 2016, 30(1): 30–37
[11] 朱蟋蟋, 孙兵, 朱大奇. 基于改进D*算法的AUV三维动态路径规划[J]. 控制工程, 2021, 28(4): 736–743
ZHU Xixi, SUN Bing, ZHU Daqi. Three-dimensional dynamic path planning of AUV based on improved D* algorithm[J]. Control engineering of China, 2021, 28(4): 736–743
[12] 姜辰凯, 李智, 盘书宝, 等. 基于改进Dijkstra算法的AGVs无碰撞路径规划[J]. 计算机科学, 2020, 47(8): 272–277
JIANG Chenkai, LI Zhi, PAN Shubao, et al. Collision-free path planning of AGVs based on improved Dijkstra algorithm[J]. Computer science, 2020, 47(8): 272–277
[13] 陈亚琳, 庄丽阳, 朱龙彪, 等. 基于改进Dijkstra算法的泊车系统路径规划研究[J]. 现代制造工程, 2017(8): 63–67
CHEN Yalin, ZHUANG Liyang, ZHU Longbiao, et al. Research on path planing of parking system based on the improved Dijkstra algorithm[J]. Modern manufacturing engineering, 2017(8): 63–67
[14] DORIGO M, MANIEZZO V, COLORNI A. Ant system: An autocatalytic optimizing process technical report 91-016[J]. Clustering, 1991, 3(12): 340.
[15] HAN Zhenhua, LIU Shugui, YU Fei, et al. A 3D measuring path planning strategy for intelligent CMMs based on an improved ant colony algorithm[J]. The international journal of advanced manufacturing technology, 2017, 93(1): 1487–1497.
[16] 方群, 徐青. 基于改进粒子群算法的无人机三维航迹规划[J]. 西北工业大学学报, 2017, 35(1): 66–73
FANG Qun, XU Qing. 3D route planning for UAV based on improved PSO algorithm[J]. Journal of Northwestern Polytechnical University, 2017, 35(1): 66–73
[17] XIA Shuang, ZHANG Xiangyin. Constrained path planning for unmanned aerial vehicle in 3D terrain using modified multi-objective particle swarm optimization[J]. Actuators, 2021, 10(10): 255.
[18] LEE J, KIM D W. An effective initialization method for genetic algorithm-based robot path planning using a directed acyclic graph[J]. Information sciences, 2016, 332: 1–18.
[19] 贺娇, 谭代伦. 基于视野范围和遗传算法的三维地形路径规划[J]. 计算机工程与应用, 2021, 57(15): 279–285
HE Jiao, TAN Dailun. Three-dimensional terrain path planning based on sight range and genetic algorithm[J]. Computer engineering and applications, 2021, 57(15): 279–285
[20] HAN Zengliang, CHEN Mou, SHAO Shuyi, et al. Improved artificial bee colony algorithm-based path planning of unmanned autonomous helicopter using multi-strategy evolutionary learning[J]. Aerospace science and technology, 2022, 122: 107374.
[21] XU Feiyi, LI Haolun, PUN C M, et al. A new global best guided artificial bee colony algorithm with application in robot path planning[J]. Applied soft computing, 2020, 88: 106037.
[22] 魏江, 王建军, 王健, 等. 基于改进蚁群算法的三维航迹规划[J]. 计算机工程与应用, 2020, 56(17): 217–223
WEI Jiang, WANG Jianjun, WANG Jian, et al. 3D path planning based on improved ant colony algorithm[J]. Computer engineering and applications, 2020, 56(17): 217–223
[23] GAO Wenxiang, TANG Qing, YE Beifa, et al. An enhanced heuristic ant colony optimization for mobile robot path planning[J]. Soft computing, 2020, 24(8): 6139–6150.
[24] WANG Lanfei, KAN Jiangming, GUO Jun, et al. 3D path planning for the ground robot with improved ant colony optimization[J]. Sensors, 2019, 19(4): 815.
[25] PU Xingcheng, XIONG Chaowen, JI Lianghao, et al. 3D path planning for a robot based on improved ant colony algorithm[J]. Evolutionary intelligence, 2024, 17(1): 55–65.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems