[1]XU Xiaobin,DUAN Haibin,ZENG Zhigang.Cooperative tracking of unmanned surface vessels at sea inspired by a multi-resolution mechanism of raptor vision[J].CAAI Transactions on Intelligent Systems,2023,18(4):867-877.[doi:10.11992/tis.202211001]
Copy

Cooperative tracking of unmanned surface vessels at sea inspired by a multi-resolution mechanism of raptor vision

References:
[1] LI Huiyan, LI Xiang. Distributed consensus of heterogeneous linear time-varying systems on UAVs–USVs coordination[J]. IEEE transactions on circuits and systems II:express briefs, 2020, 67(7): 1264–1268.
[2] HUANG Dapeng, LI Huiyan, LI Xiang. Formation of generic UAVs-USVs system under distributed model predictive control scheme[J]. IEEE transactions on circuits and systems II:express briefs, 2020, 67(12): 3123–3127.
[3] YANG Jiachen, WANG Chenguang, JIANG Bin, et al. Visual perception enabled industry intelligence: state of the art, challenges and prospects[J]. IEEE transactions on industrial informatics, 2021, 17(3): 2204–2219.
[4] 林淑彬, 吴贵山, 姚文勇, 等. 基于光照自适应动态一致性的无人机目标跟踪[J]. 智能系统学报, 2022, 17(6): 1093–1103
LIN Shubin, WU Guishan, YAO Wenyong, et al. Based on illumination adaptive dynamic consistent tracker for unmanned aerial vehicle[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1093–1103
[5] 林椹尠, 郑兴宁, 吴成茂. 结合模糊特征检测的鲁棒核相关滤波跟踪法[J]. 智能系统学报, 2021, 16(2): 323–329
LIN Zhenzian, ZHENG Xingning, WU Chengmao. Robust KCF tracking algorithm combined with fuzzy feature detection[J]. CAAI transactions on intelligent systems, 2021, 16(2): 323–329
[6] 宁欣, 李卫军, 田伟娟, 等. 一种自适应模板更新的判别式KCF跟踪方法[J]. 智能系统学报, 2019, 14(1): 121–126
NING Xin, LI Weijun, TIAN Weijuan, et al. Adaptive template update of discriminant KCF for visual tracking[J]. CAAI transactions on intelligent systems, 2019, 14(1): 121–126
[7] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//Proceedings of the 12th European conference on Computer Vision - Volume Part IV. New York: ACM, 2012: 702?715.
[8] LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4904?4913.
[9] DANELLJAN M, H?GER G, SHAHBAZ KHAN F, et al. Accurate scale estimation for robust visual tracking[C]//Proceedings of the British Machine Vision Conference. Columbus: British Machine Vision Association, 2014: 109613.
[10] DANELLJAN M, H?GER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(8): 1561–1575.
[11] WANG Naiyan, YEUNG D Y. Learning a deep compact image representation for visual tracking[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 1. New York: ACM, 2013: 809?817.
[12] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2016: 4293-4302.
[13] WANG Lijun, OUYANG Wanli, WANG Xiaogang, et al. Visual tracking with fully convolutional networks[C]//2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3119-3127.
[14] WANG Qiang, ZHANG Li, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1328-1338.
[15] LI Bo, WU Wei, WANG Qiang, et al. SiamRPN: evolution of Siamese visual tracking with very deep networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2019: 4277-4286.
[16] DOMINONI D M, HALFWERK W, BAIRD E, et al. Why conservation biology can benefit from sensory ecology[J]. Nature ecology & evolution, 2020, 4(4): 502–511.
[17] 段海滨, 邓亦敏, 王晓华. 仿鹰眼视觉及应用[M]. 北京: 科学出版社, 2021.
DUAN Haibin, DENG Yimin, WANG Xiaohua. Biological eagle-eye vision and its application[M]. Beijing: Science Press, 2021.
[18] 赵国治, 段海滨. 仿鹰眼视觉技术研究进展[J]. 中国科学:技术科学, 2017, 47(5): 514–523
ZHAO Guozhi, DUAN Haibin. Progresses in biological eagle-eye vision technology[J]. Scientia sinica technologica, 2017, 47(5): 514–523
[19] PECORA R A, WATANABE S S, BRITO GUIMAR?ES M, et al. Applicability of optical coherence tomography in blue-fronted parrots (Amazona aestiva)[J]. Veterinary ophthalmology, 2020, 23(2): 358–367.
[20] POTIER S. Visual adaptations in predatory and scavenging diurnal raptors[J]. Diversity, 2020, 12(10): 400.
[21] POTIER S, LIEUVIN M, PFAFF M, et al. How fast can raptors see?[J]. Journal of experimental biology, 2019, 223(Pt 1): jeb209031.
[22] HERMANN, WAGNER, et al. Neuroethology of prey capture in the barn owl (Tyto alba L. )[J]. Journal of physiology-Paris, 2013, 107(1/2): 51–61.
[23] LAI Dihui, BRANDT S, LUKSCH H, et al. Recurrent antitopographic inhibition mediates competitive stimulus selection in an attention network[J]. Journal of neurophysiology, 2011, 105(2): 793–805.
[24] HUANG Liqiang, PASHLER H. A Boolean map theory of visual attention[J]. Psychological review, 2007, 114(3): 599–631.
[25] ZHANG Jianming, SCLAROFF S. Exploiting surroundedness for saliency detection: a Boolean map approach[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(5): 889–902.
[26] KEVIN, HEALY. Metabolic rate and body size are linked with perception of temporal information[J]. Animal behaviour, 2013, 86(4): 685–696.
[27] DUTTA A, WAGNER H, GUTFREUND Y. Responses to pop-out stimuli in the barn owl’s optic tectum can emerge through stimulus-specific adaptation[J]. The journal of neuroscience:the official journal of the society for neuroscience, 2016, 36(17): 4876–4887.
[28] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6931-6939.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems