[1]SUN Yuxin,SU Li,CHEN Yusheng,et al.SOLOA ship instance segmentation algorithm based on attention[J].CAAI Transactions on Intelligent Systems,2023,18(6):1197-1204.[doi:10.11992/tis.202210039]
Copy

SOLOA ship instance segmentation algorithm based on attention

References:
[1] HUANG Guoquan, WAN Zining, LIU Xinggao, et al. Ship detection based on squeeze excitation skip-connection path networks for optical remote sensing images[J]. Neurocomputing, 2019, 332: 215–223.
[2] SU Hao, WEI Shunjun, LIU Shan, et al. HQ-ISNet: high-quality instance segmentation for remote sensing imagery[J]. Remote sensing, 2020, 12(6): 989.
[3] WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE access, 2020, 8: 120234–120254.
[4] 胡欣, 郭庆昌. 基于红外图像的海上船舶分割算法研究[J]. 水雷战与舰船防护, 2009, 17(1): 5–8
HU Xin, GUO Qingchang. Research on ship segmentation algorithm based on IR image[J]. Mine warfare & ship self-defence, 2009, 17(1): 5–8
[5] SUN Yuxin, SU Li, LUO Yongkang, et al. Global mask R-CNN for marine ship instance segmentation[J]. Neurocomputing, 2022, 480: 257–270.
[6] SUN Yuxin, SU Li, LUO Yongkang, et al. IRDCLNet: instance segmentation of ship images based on interference reduction and dynamic contour learning in foggy scenes[J]. IEEE transactions on circuits and systems for video technology, 2022, 32(9): 6029–6043.
[7] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[8] BOLYA D, ZHOU Chong, XIAO Fanyi, et al. YOLACT: real-time instance segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 9156-9165.
[9] GAO Naiyu, SHAN Yanhu, WANG Yupei, et al. SSAP: single-shot instance segmentation with affinity pyramid[J]. IEEE transactions on circuits and systems for video technology, 2021, 31(2): 661–673.
[10] BOLYA D, ZHOU Chong, XIAO Fanyi, et al. YOLACT++ better real-time instance segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(2): 1108–1121.
[11] SUN Yuxin, SU Li, CUI Haohao, et al. Ship instance segmentation in foggy scene[C]//2021 40th Chinese Control Conference. Shanghai: IEEE, 2021: 8340-8345.
[12] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[13] ZHANG Rufeng, TIAN Zhi, SHEN Chunhua, et al. Mask encoding for single shot instance segmentation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10223-10232.
[14] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(5): 1483–1498.
[15] CHEN L C, HERMANS A, PAPANDREOU G, et al. MaskLab: instance segmentation by refining object detection with semantic and direction features[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4013-4022.
[16] KIRILLOV A, WU Yuxin, HE Kaiming, et al. PointRend: image segmentation As rendering[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9796-9805.
[17] CHENG Tianheng, WANG Xinggang, HUANG Lichao, et al. Boundary-preserving mask R-CNN[C]//European Conference on Computer Vision. Cham: Springer, 2020: 660-676.
[18] CHEN Kai, PANG Jiangmiao, WANG Jiaqi, et al. Hybrid task cascade for instance segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 4969-4978.
[19] WANG Shaoru, GONG Yongchao, XING Junliang, et al. RDSNet: a new deep architecture for reciprocal object detection and instance segmentation[C]//Proceedings of the AAAI conference on artificial intelligence. Washington, DC: AAAI press 2020, 34(7): 12208-12215.
[20] WANG X, ZHANG R, KONG T, et al. SOLOv2: dynamic and fast instance segmentation[J]. Advances in neural information processing systems, 2020, 33: 17721–17732.
[21] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[22] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE, 2016: 640-651.
[23] LIU R, LEHMAN J, MOLINO P, et al. An intriguing failing of convolutional neural networks and the CoordConv solution[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM, 2018: 9628-9639.
[24] WU Yuxin, HE Kaiming. Group normalization[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[25] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(2): 318–327.
[26] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2): 303–338.
[27] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[28] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90.
[29] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[30] XIE Enze, SUN Peize, SONG Xiaoge, et al. PolarMask: single shot instance segmentation with polar representation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12190-12199.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems