[1]ZHOU Jing,HU Yiyu,HUANG Xinhan.Shape completion-guided Transformer point cloud object detection method[J].CAAI Transactions on Intelligent Systems,2023,18(4):731-742.[doi:10.11992/tis.202210038]
Copy

Shape completion-guided Transformer point cloud object detection method

References:
[1] 张新钰, 邹镇洪, 李志伟, 等. 面向自动驾驶目标检测的深度多模态融合技术[J]. 智能系统学报, 2020, 15(4): 758–771
ZHANG Xinyu, ZOU Zhenhong, LI Zhiwei, et al. Deep multi-modal fusion in object detection for autonomous driving[J]. CAAI transactions on intelligent systems, 2020, 15(4): 758–771
[2] LIANG Ming, YANG Bin, CHEN Yun, et al. Multi-task multi-sensor fusion for 3D object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2019: 7337-7345.
[3] ZHOU Yin, SUN Pei, ZHANG Yu, et al. End-to-end multi-view fusion for 3D object detection in LiDAR point clouds[EB/OL]. (2019?10?15)[2022?10?29]. https://arxiv.org/abs/1910.06528.
[4] DENG Jiajun, ZHOU Wengang, ZHANG Yanyong, et al. From multi-view to hollow-3D: hallucinated hollow-3D R-CNN for 3D object detection[J]. IEEE transactions on circuits and systems for video technology, 2021, 31(12): 4722–4734.
[5] ZHOU Yin, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4490?4499.
[6] YAN Yan, MAO Yuxing, LI Bo. SECOND: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[7] LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12689-12697.
[8] YE Maosheng, XU Shuangjie, CAO Tongyi. HVNet: hybrid voxel network for LiDAR based 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1628-1637.
[9] DENG Jiajun, SHI Shaoshuai, LI Peiwei, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2021: 1201?1209.
[10] HE Chenhang, ZENG Hui, HUANG Jianqiang, et al. Structure aware single-stage 3D object detection from point cloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2020: 11870-11879.
[11] SHI Shaoshuai, WANG Zhe, SHI Jianping, et al. From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(8): 2647–2664.
[12] SHI Shaoshuai, WANG Xiaogang, LI Hongsheng. PointRCNN: 3D object proposal generation and detection from point cloud[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 770-779.
[13] YANG Zetong, SUN Yanan, LIU Shu, et al. 3DSSD: point-based 3D single stage object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2020: 11037-11045.
[14] ZHANG Yifan, HU Qingyong, XU Guoquan, et al. Not all points are equal: learning highly efficient point-based detectors for 3D LiDAR point clouds[EB/OL]. (2022?03?21)[2022?10?29]. https://arxiv.org/abs/2203.11139.
[15] SHI Weijing, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1708-1716.
[16] LIU Ze, ZHANG Zheng, CAO Yue, et al. Group-free 3D object detection via transformers[C]//2021 IEEE/CVF International Conference on Computer Vision . Piscataway: IEEE, 2021: 2929-2938.
[17] MISRA I, GIRDHAR R, JOULIN A. An end-to-end transformer model for 3D object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2886-2897.
[18] PAN Xuran, XIA Zhuofan, SONG Shiji, et al. 3D object detection with pointformer[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7459-7468.
[19] 韩磊, 高永彬, 史志才. 基于稀疏Transformer的雷达点云三维目标检测[J]. 计算机工程, 2022, 48(11): 104?110, 144.
HAN Lei, GAO Yongbin, SHI Zhicai. Three-dimensional object detection of LiDAR point cloud based on sparse transformer[J]. Computer engineering, 2022, 48(11): 104-110, 144.
[20] ZHOU Dingfu, FANG Jin, SONG Xibin, et al. IoU loss for 2D/3D object detection[C]//2019 International Conference on 3D Vision . Piscataway: IEEE, 2019: 85-94.
[21] 赵毅强, 艾西丁·艾克白尔, 陈瑞, 等. 基于体素化图卷积网络的三维点云目标检测方法[J]. 红外与激光工程, 2021, 50(10): 281–289
ZHAO Yiqiang, ARXIDIN A, CHEN Rui, et al. 3D point cloud object detection method in view of voxel based on graph convolution network[J]. Infrared and laser engineering, 2021, 50(10): 281–289
[22] SHI Shaoshuai, GUO Chaoxu, JIANG Li, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10526-10535.
[23] LI Jiale, DAI Hang, SHAO Ling, et al. Anchor-free 3D single stage detector with mask-guided attention for point cloud[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 553?562.
[24] NOH J, LEE S, HAM B. HVPR: hybrid voxel-point representation for single-stage 3D object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14600-14609.
[25] ZARZAR J, GIANCOLA S, GHANEM B. PointRGCN: graph convolution networks for 3D vehicles detection refinement[EB/OL]. (2019?11?27)[2022?10?29]. https://arxiv.org/abs/1911.12236.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems