[1]JING Junchang,ZHANG Zhiyong,SONG Bin,et al.Disinformation diffusion control method integrating user propagation risk and node influence analysis[J].CAAI Transactions on Intelligent Systems,2024,19(2):360-369.[doi:10.11992/tis.202210009]
Copy

Disinformation diffusion control method integrating user propagation risk and node influence analysis

References:
[1] CHOI D, OH H, CHUN Selin, et al. Preventing rumor spread with deep learning[J]. Expert systems with applications, 2022, 197: 116688.
[2] ZHAO Zilong, ZHAO Jichang, SANO Y, et al. Fake news propagates differently from real news even at early stages of spreading[J]. EPJ data science, 2020, 9(1): 7.
[3] VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146–1151.
[4] CHEN Weineng, TAN Dazhao, YANG Qiang, et al. Ant colony optimization for the control of pollutant spreading on social networks[J]. IEEE transactions on cybernetics, 2020, 50(9): 4053–4065.
[5] 黄宏程, 赖礼城, 胡敏, 等. 基于严格可控理论的社交网络信息传播控制方法[J]. 电子与信息学报, 2018, 40(7): 1707–1714
HUANG Hongcheng, LAI Licheng, HU Min, et al. Information propagation control method in social networks based on exact controllability theory[J]. Journal of electronics & information technology, 2018, 40(7): 1707–1714
[6] JIA Jianfeng, LIU Xuewei, ZHANG Yixin, et al. Rumor propagation controlling based on finding important nodes in complex network[J]. Journal of industrial & management optimization, 2020, 16(5): 2521–2529.
[7] JIANG Qingye, SONG Guojie, CONG Gao, et al. Simulated annealing based influence maximization in social networks[C]//Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. San Francisco: ACM, 2011: 127–132.
[8] LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost-effective outbreak detection in networks[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose: ACM, 2007: 420–429.
[9] GOYAL A, LU Wei, LAKSHMANAN L V S. CELF++: optimizing the greedy algorithm for influence maximization in social networks[C]//Proceedings of the 20th International Conference Companion on World Wide Web. Hyderabad: ACM, 2011: 47–48.
[10] LIU Huanli, MA Chuang, XIANG Bingbing, et al. Identifying multiple influential spreaders based on generalized closeness centrality[J]. Physica A:statistical mechanics and its applications, 2018, 492: 2237–2248.
[11] LEV T, BEN-GAL I, SHMUELI E. Influence maximization through scheduled seeding in a real-world setting[J]. IEEE transactions on computational social systems, 2022, 9(2): 494–507.
[12] SRINIVASAN S, DHINESH BABU L D. A bio-inspired defensive rumor confinement strategy in online social networks[J]. Journal of organizational and end user computing, 2021, 33(1): 47–70.
[13] CHANG C K. Situation analytics—at the dawn of a new software engineering paradigm[J]. Science China information sciences, 2018, 61(5): 050101.
[14] ZHANG Zhiyong, SUN Ranran, WANG Xiaoxue, et al. A situational analytic method for user behavior pattern in multimedia social networks[J]. IEEE transactions on big data, 2019, 5(4): 520–528.
[15] 张志勇, 荆军昌, 李斐, 等. 人工智能视角下的在线社交网络虚假信息检测、传播与控制研究综述[J]. 计算机学报, 2021, 44(11): 2261–2282
ZHANG Zhiyong, JING Junchang, LI Fei, et al. Survey on fake information detection, propagation and control in online social networks from the perspective of artificial intelligence[J]. Chinese journal of computers, 2021, 44(11): 2261–2282
[16] LIU Weibo, WANG Zidong, YUAN Yuan, et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer[J]. IEEE transactions on cybernetics, 2021, 51(2): 1085–1093.
[17] GONG Maoguo, YAN Jianan, SHEN Bo, et al. Influence maximization in social networks based on discrete particle swarm optimization[J]. Information sciences, 2016, 367/368: 600–614.
[18] TANG Jianxin, ZHANG Ruisheng, YAO Yabing, et al. Identification of top-k influential nodes based on enhanced discrete particle swarm optimization for influence maximization[J]. Physica A:statistical mechanics and its applications, 2019, 513: 477–496.
[19] LIU Zhaoli, QIN Tao, SUN Qindong, et al. SIRQU: dynamic quarantine defense model for online rumor propagation control[J]. IEEE transactions on computational social systems, 2022, 9(6): 1703–1714.
[20] ZHANG N, HUANG H, DUARTE M, et al. Risk analysis for rumor propagation in metropolises based on improved 8-state ICSAR model and dynamic personal activity trajectories[J]. Physica A:statistical mechanics and its applications, 2016, 451: 403–419.
[21] 洪巍, 王晨雪, 吴林海, 等. 基于保护动机理论的食品安全网络谣言关注度影响因素研究[J]. 系统工程理论与实践, 2022, 42(11): 3121–3138
HONG Wei, WANG Chenxue, WU Linhai, et al. Research on influencing factors of food safety Internet rumor attention based on protection motivation theory[J]. Systems engineering-theory & practice, 2022, 42(11): 3121–3138
[22] 杨洋洋, 谢雪梅. 网络谣言风险测度与治理路径研究[J]. 情报科学, 2021, 39(9): 170–177
YANG Yangyang, XIE Xuemei. Research on risk measurement and governance path of Internet rumors[J]. Information science, 2021, 39(9): 170–177
[23] KEMPE D, KLEINBERG J, TARDOS ?. Influential nodes in a diffusion model for social networks[M]//CAIRES L, ITALIANO G F, MONTEIRO L, et al. Automata, Languages and Programming. Berlin: Springer Berlin Heidelberg, 2005: 1127-1138.
[24] TAHERINIA M, ESMAEILI M, MINAEI-BIDGOLI B. Optimizing CELF algorithm for influence maximization problem in social networks[J]. Journal of artificial intelligence and data mining, 2022, 10(1): 25–41.
[25] XIAO Yunpeng, LI Jinghua, ZHU Yangfu, et al. User behavior prediction of social hotspots based on multimessage interaction and neural network[J]. IEEE transactions on computational social systems, 2020, 7(2): 536–545.
[26] GHOSH R, SURACHAWALA T, LERMAN K. Entropy-based classification of ‘retweeting’ activity on twitter[EB/OL]. [2011-06-02](2020-01-01). http://arxiv.org/abs/1106.0346.pdf.
[27] FU Boyang, SUI Jie. Multi-modal affine fusion network for social media rumor detection[J]. PeerJ computer science, 2022, 8: e928.
[28] XIAO Yunpeng, HUANG Zhen, LI Qian, et al. Diffusion pixelation: a game diffusion model of rumor & anti-rumor inspired by image restoration[J]. IEEE transactions on knowledge and data engineering, 2023, 35(5): 4682–4694.
[29] KIM D, SEO D, CHO S, et al. Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec[J]. Information sciences, 2019, 477: 15–29.
[30] LIN Zhouhan, FENG Minwei, SANTOS C, et al. A structured self-attentive sentence Embedding[C]//ICLR’2017: Proceedings of the 5th International Conference on Learning Representations. Toulon: OpenReview, 2017.
[31] LI Zhe, HUANG Xinyu. Identifying influential spreaders in complex networks by an improved gravity model[J]. Scientific reports, 2021, 11(1): 22194.
[32] ZHANG Zhiyong, SUN Ranran, ZHAO Changwei, et al. CyVOD: a novel trinity multimedia social network scheme[J]. Multimedia tools and applications, 2017, 76(18): 18513–18529.
[33] JING Junchang, ZHANG Zhiyong, CHOO K K R, et al. Inference of user desires to spread disinformation based on social situation analytics and group effect[J]. IEEE transactions on dependable and secure computing, 2023, 20(3): 1833–1848.
[34] JING Junchang, LI Fei, SONG Bin, et al. Disinformation propagation trend analysis and identification based on social situation analytics and multilevel attention network[J]. IEEE transactions on computational social systems, 2023, 10(2): 507–522.
[35] 卫新乐, 张志勇, 宋斌, 等. 基于纵向联邦学习的社交网络跨平台恶意用户检测方法[J]. 小型微型计算机系统, 2022, 43(7): 1541–1546
WEI Xinle, ZHANG Zhiyong, SONG Bin, et al. Social networks cross-platform malicious user detection method based on vertical federated learning[J]. Journal of Chinese computer systems, 2022, 43(7): 1541–1546
[36] BRANDES U. On variants of shortest-path betweenness centrality and their generic computation[J]. Social networks, 2008, 30(2): 136–145.
[37] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social networks, 1978, 1(3): 215–239.
[38] BOLDI P, SANTINI M, VIGNA S. PageRank: functional dependencies[J]. ACM transactions on information systems, 2009, 27(4): 19.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems