[1]MENG Yuebo,ZHANG Yalin,WANG Zhou.Crowd counting method based on proportion fusion and multilayer scale-aware[J].CAAI Transactions on Intelligent Systems,2024,19(2):307-315.[doi:10.11992/tis.202208048]
Copy

Crowd counting method based on proportion fusion and multilayer scale-aware

References:
[1] CHEN Ke, LOY C C, GONG Shaogang, et al. Feature mining for localised crowd counting[C]//Proceedings ofthe British Machine Vision Conference 2012. Surrey. British Machine Vision Association, 2012: 1-11.
[2] 向飞宇, 张秀伟. 基于卷积神经网络的人群计数算法研究[J]. 计算机技术与发展, 2021, 31(7): 42–46
XIANG Feiyu, ZHANG Xiuwei. Research on crowd counting algorithm based on convolution neural network[J]. Computer technology and development, 2021, 31(7): 42–46
[3] SOURTZINOS P, VELASTIN S A, JARA M, et al. People counting in videos by fusing temporal cues from spatial context-aware convolutional neural networks[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 655-667.
[4] ZHANG Yingying, ZHOU Desen, CHEN Siqin, et al. Single-image crowd counting via multi-column convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 589-597.
[5] SAM D B, SURYA S, BABU R V. Switching convolutional neural network for crowd counting[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4031-4039.
[6] 孟月波, 纪拓, 刘光辉, 等. 编码-解码多尺度卷积神经网络人群计数方法[J]. 西安交通大学学报, 2020, 54(5): 149–157
MENG Yuebo, JI Tuo, LIU Guanghui, et al. Encoding-decoding multi-scale convolutional neural network for crowd counting[J]. Journal of Xi’an Jiaotong university, 2020, 54(5): 149–157
[7] SHEN Zan, XU Yi, NI Bingbing, et al. Crowd counting via adversarial cross-scale consistency pursuit[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5245-5254.
[8] JIANG Xiaoheng, ZHANG Li, XU Mingliang, et al. Attention scaling for crowd counting[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4705-4714.
[9] LI Yuhong, ZHANG Xiaofan, CHEN Deming. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1091-1100.
[10] XU Chenfeng, QIU Kai, FU Jianlong, et al. Learn to scale: generating multipolar normalized density maps for crowd counting[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 8381-8389.
[11] JIANG Xiaolong, XIAO Zehao, ZHANG Baochang, et al. Crowd counting and density estimation by trellis encoder-decoder networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 6126-6135.
[12] LIU Weizhe, SALZMANN M, FUA P. Context-aware crowd counting[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 5094-5103.
[13] LIU Xiyang, YANG Jie, DING Wenrui, et al. Adaptive mixture regression network with local counting map for crowd counting[M]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 241-257.
[14] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. 3rd international conference on learning representations, ICLR 2015-conference track proceedings, 2015: 1-14.
[15] SINDAGI V A, PATEL V M. Generating high-quality crowd density maps using contextual pyramid CNNs[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1879-1888.
[16] 刘万军, 佟畅, 曲海成. 空洞卷积与注意力融合的对抗式图像阴影去除算法[J]. 智能系统学报, 2021, 16(6): 1081–1089
LIU Wanjun, TONG Chang, QU Haicheng. An antagonistic image shadow removal algorithm based on dilated convolution and attention mechanism[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1081–1089
[17] ZHANG Cong, LI Hongsheng, WANG Xiaogang, et al. Cross-scene crowd counting via deep convolutional neural networks[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 833-841.
[18] IDREES H, SALEEMI I, SEIBERT C, et al. Multi-source multi-scale counting in extremely dense crowd images[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2547-2554.
[19] IDREES H, TAYYAB M, ATHREY K, et al. Composition loss for counting, density map estimation and localization in dense crowds[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 544-559.
[20] ZHU Pengfei, WEN Longyin, DU Dawei, et al. Vision Meets Drones: Past, Present and Future[EB/OL]. (2020-01-16)[2022-01-01]. https://arxiv.org/pdf/2001.06303.pdf.
[21] XIONG Feng, SHI Xingjian, YEUNG D Y. Spatiotemporal modeling for crowd counting in videos[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5161-5169.
[22] 张宇倩, 李国辉, 雷军, 等. FF-CAM: 基于通道注意机制前后端融合的人群计数[J]. 计算机学报, 2021, 44(2): 304–317
ZHANG Yuqian, LI Guohui, LEI Jun, et al. FF-CAM: crowd counting based on frontend-backend fusion through channel-attention mechanism[J]. Chinese journal of computers, 2021, 44(2): 304–317
[23] ZENG Xin, WU Yunpeng, HU Shizhe, et al. DSPNet: deep scale purifier network for dense crowd counting[J]. Expert systems with applications, 2020, 141: 112977.
[24] 翁佳鑫, 仝明磊. 基于Triangle Net的密集人群计数[J]. 科技创新与应用, 2021(9): 38–40,44
WENG Jiaxin, TONG Minglei. Dense crowd counting based on Triangle Net[J]. Technology innovation and application, 2021(9): 38–40,44
[25] ZHANG Jun, LIU Jiaze, WANG Zhizhong. Convolutional neural network for crowd counting on metro platforms[J]. Symmetry, 2021, 13(4): 703.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems