[1]LI Tao,GAO Zhigang,GUAN Shengyuan,et al.Global attention mechanism with real-time semantic segmentation network[J].CAAI Transactions on Intelligent Systems,2023,18(2):282-292.[doi:10.11992/tis.202208027]
Copy

Global attention mechanism with real-time semantic segmentation network

References:
[1] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 3431?3440.
[2] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015?04?10)[2022?08?06].https://doi.org/10.48550/arXiv.1409.1556.
[3] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234?241.
[4] YU F, KOLTUN V. MULTI-SCALE context aggregation by dilated convolutions[EB/OL]. (2016?04?30)[2022?08?06].https://doi.org/10.48550/arXiv.1511.07122.
[5] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017?12?05)[2022?08?06].https://doi.org/10.48550/arXiv.1706.05587.
[6] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE winter conference on applications of computer vision. Nevada: IEEE, 2018: 1451?1460.
[7] ZHAO Hengshuang, QI Xiaojuan, SHEN Xiaoyong, et al. ICNet for Real-Time Semantic Segmentation on High-Resolution Images[C]//European Conference on Computer Vision. Cham: Springer, 2018: 418?434.
[8] LI Hanchao, XIONG Pengfei, FAN Haoqiang, et al. DFANet: deep feature aggregation for real-time semantic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9514?9523.
[9] YU Changqian, GAO Changxin, WANG Jingbo, et al. Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation[J]. International journal of computer vision, 2021, 129(11): 3051–3068.
[10] HONG Yuanduo, PAN Huihui, SUN Weichao, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes[EB/OL]. (2021?09?01)[2022?08?06].https://doi.org/10.48550/arXiv.2101.06085.
[11] LIU Yichao, SHAO Zongru, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. (2021-12-10)[2022-08-06].https://doi.org/10.48550/arXiv.2112.05561.
[12] 丁宗元, 孙权森, 王涛, 等. 基于融合多尺度标记信息的深度交互式图像分割[J]. 计算机研究与发展, 2021, 58(8): 1705–1717
DING Zongyuan, SUN Quansen, WANG Tao, et al. Deep interactive image segmentation based on fusion multi-scale annotation information[J]. Journal of computer research and development, 2021, 58(8): 1705–1717
[13] 张墺琦, 亢宇鑫, 武卓越, 等. 基于多尺度特征和注意力机制的肝脏组织病理图像语义分割网络[J]. 模式识别与人工智能, 2021, 34(4): 375–384
ZHANG Aoqi, KANG Yuxin, WU Zhuoyue, et al. Semantic segmentation network of pathological images of liver tissue based on multi-scale feature and attention mechanism[J]. Pattern recognition and artificial intelligence, 2021, 34(4): 375–384
[14] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3?19.
[15] 杨昆, 常世龙, 王尉丞, 等. 基于sECANet通道注意力机制的肾透明细胞癌病理图像ISUP分级预测[J]. 电子与信息学报, 2022, 44(1): 138–148
YANG Kun, CHANG Shilong, WANG Yucheng, et al. Predict the ISUP grade of clear cell renal cell carcinoma using pathological images based on sECANet Chanel attention[J]. Journal of electronics & information technology, 2022, 44(1): 138–148
[16] 张志华, 温亚楠, 慕号伟, 等. 结合双注意力机制的道路裂缝检测[J]. 中国图象图形学报, 2022, 27(7): 2240–2250
ZHANG Zhihua, WEN Yanan, MU Haowei, et al. Dual attention mechanism based pavement crack detection[J]. Journal of image and graphics, 2022, 27(7): 2240–2250
[17] FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3146?3154.
[18] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481–2495.
[19] 徐硕, 郑锋, 唐俊, 等. 双分支特征融合网络的步态识别算法[J]. 中国图象图形学报, 2022, 27(7): 2263–2273
XU Shuo, ZHENG Feng, TANG Jun, et al. Dual branch feature fusion network based gait recognition algorithm[J]. Journal of image and graphics, 2022, 27(7): 2263–2273
[20] 刘万军, 佟畅, 曲海成. 空洞卷积与注意力融合的对抗式图像阴影去除算法[J]. 智能系统学报, 2021, 16(6): 1081–1089
LIU Wanjun, TONG Chang, QU Haicheng. An antagonistic image shadow removal algorithm based on dilated convolution and attention mechanism[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1081–1089
[21] 吴止锾, 高永明, 李磊, 等. 类别非均衡遥感图像语义分割的全卷积网络方法[J]. 光学学报, 2019(4): 393?404.
WU Zhihuan, GAO Yongming, LI Lei, et al. Fully convolutional network method of semantic segmentation of class imbalance remote sensing images[J]. Acta optica sinica, 2019(4): 393?404.
[22] PENG J, LIU Y, TANG S, et al. PP-LiteSeg: A superior real-time semantic segmentation model[EB/OL]. (2022?04?06)[2022?08?06].https://doi.org/10.48550/arXiv.2204.02681
[23] YU Changqian, WANG Jingbo, PENG Chao, et al. BiSeNet: Bilateral Segmentation Network for Real-Time Semantic Segmentation[C]//European Conference on Computer Vision. Cham: Springer, 2018: 334?349.
[24] 张小娟, 汪西莉. 完全残差连接与多尺度特征融合遥感图像分割[J]. 遥感学报, 2020, 24(9): 1120–1133
ZHANG Xiaojuan, WANG Xili. Image segmentation models of remote sensing using full residual connection and multiscale feature fusion[J]. Journal of remote sensing, 2020, 24(9): 1120–1133
[25] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 833?851.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems