[1]LI Jie,SHI Wuxi,LI Baoquan.Fixed-time formation control of multimobile robots[J].CAAI Transactions on Intelligent Systems,2023,18(6):1233-1242.[doi:10.11992/tis.202208021]
Copy

Fixed-time formation control of multimobile robots

References:
[1] 李苗, 刘忠信, 陈增强. 一种多非完整移动机器人分布式编队控制方法[J]. 智能系统学报, 2017, 12(1): 88–94
LI Miao, LIU Zhongxin, CHEN Zengqiang. A distributed formation control method for multiple nonholonomic mobile robots[J]. CAAI transactions on intelligent systems, 2017, 12(1): 88–94
[2] HACENE N, MENDIL B. Fuzzy behavior-based control of three wheeled omnidirectional mobile robot[J]. International journal of automation and computing, 2019, 16(2): 163–185.
[3] 谌海云, 陈华胄, 刘强. 基于改进人工势场法的多无人机三维编队路径规划[J]. 系统仿真学报, 2020, 32(3): 414–420
CHEN Haiyun, CHEN Huazhou, LIU Qiang. Multi-UAV 3D formation path planning based on improved artificial potential field[J]. Journal of system simulation, 2020, 32(3): 414–420
[4] CHEN Xuanlin, HUANG Fanghao, ZHANG Yougong, et al. A novel virtual-structure formation control design for mobile robots with obstacle avoidance[J]. Applied sciences, 2020, 10(17): 5807.
[5] 罗京, 刘成林, 刘飞. 多移动机器人的领航-跟随编队避障控制[J]. 智能系统学报, 2017, 12(2): 202–212
LUO Jing, LIU Chenglin, LIU Fei. Piloting-following formation and obstacle avoidance control of multiple mobile robots[J]. CAAI transactions on intelligent systems, 2017, 12(2): 202–212
[6] CAI He, HUANG Jie. Leader-following attitude consensus of multiple rigid body systems by attitude feedback control[J]. Automatica, 2016, 69: 87–92.
[7] HAN Tao, GUAN Zhihong, CHI Ming, et al. Multi-formation control of nonlinear leader-following multi-agent systems[J]. ISA transactions, 2017, 69: 140–147.
[8] YAN Lixia, MA Baoli. Adaptive practical leader-following formation control of multiple nonholonomic wheeled mobile robots[J]. International journal of robust and nonlinear control, 2020, 30(17): 7216–7237.
[9] LIN Sida, JIA Ruiming, YUE Ming, et al. On composite leader–follower formation control for wheeled mobile robots with adaptive disturbance rejection[J]. Applied artificial intelligence, 2019, 33(14): 1306–1326.
[10] DAI Shilu, HE Shude, CHEN Xin, et al. Adaptive leader–follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance[J]. IEEE transactions on industrial informatics, 2020, 16(6): 3662–3671.
[11] SHOJAEI K, ABDOLMALEKI M. Saturated observer-based adaptive neural network leader-following control of N tractors with n-trailers with a guaranteed performance[J]. International journal of adaptive control and signal processing, 2021, 35(1): 15–37.
[12] LIU Andong, ZHANG Wenan, YU Li, et al. Formation control of multiple mobile robots incorporating an extended state observer and distributed model predictive approach[J]. IEEE transactions on systems, man, and cybernetics:systems, 2020, 50(11): 4587–4597.
[13] WANG Xiangke, YU Yangguang, LI Zhongkui. Distributed sliding mode control for leader-follower formation flight of fixed-wing unmanned aerial vehicles subject to velocity constraints[J]. International journal of robust and nonlinear control, 2021, 31(6): 2110–2125.
[14] MIAO Zhiqiang, LIU Yunhui, WANG Yaonan, et al. Distributed estimation and control for leader-following formations of nonholonomic mobile robots[J]. IEEE transactions on automation science and engineering, 2018, 15(4): 1946–1954.
[15] BHAT S P, BERNSTEIN D S. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE transactions on automatic control, 1998, 43(5): 678–682.
[16] LI Yongming, YANG Tingting, LIU Lu, et al. Finite-time optimal control for interconnected nonlinear systems[J]. International journal of robust and nonlinear control, 2020, 30(8): 3451–3470.
[17] HERNáNDEZ-LEóN P, DáVILA J, SALAZAR S, et al. Distance-based formation maneuvering of non-holonomic wheeled mobile robot multi-agent system[J]. IFAC-PapersOnLine, 2020, 53(2): 5665–5670.
[18] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE transactions on automatic control, 2012, 57(8): 2106–2110.
[19] NI Junkang, WU Zhonghua, LIU Ling, et al. Fixed-time adaptive neural network control for nonstrict-feedback nonlinear systems with deadzone and output constraint[J]. ISA transactions, 2020, 97: 458–473.
[20] GAO Fangzheng, HUANG Jiacai, SHI Xinxin, et al. Nonlinear mapping-based fixed-time stabilization of uncertain nonholonomic systems with time-varying state constraints[J]. Journal of the franklin institute, 2020, 357(11): 6653–6670.
[21] ZHOU Qi, DU Peihao, LI Hongyi, et al. Adaptive fixed-time control of error-constrained pure-feedback interconnected nonlinear systems[J]. IEEE transactions on systems, man, and cybernetics:systems, 2021, 51(10): 6369–6380.
[22] CONSOLINI L, MORBIDI F, PRATTICHIZZO D, et al. Leader-follower formation control of nonholonomic mobile robots with input constraints[J]. Automatica, 2008, 44(5): 1343–1349.
[23] LU Peifen, WANG He, ZHANG Fan, et al. Formation control of nonholonomic mobile robots using distributed estimators[J]. IEEE transactions on circuits and systems II:express briefs, 2020, 67(12): 3162–3166.
[24] 苏博, 王洪斌, 王跃灵, 等. 基于固定时间滑模干扰观测器的AUVs事件触发编队控制[J]. 控制与决策, 2022, 37(5): 1116–1126
SU Bo, WANG Hongbin, WANG Yueling, et al. Event-triggered formation control for AUVs with fixed-time sliding mode disturbance observer[J]. Control and decision, 2022, 37(5): 1116–1126
[25] ZUO Zongyu, TIE Lin. A new class of finite-time nonlinear consensus protocols for multi-agent systems[J]. International journal of control, 2014, 87(2): 363–370.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems