[1]ZHANG Yuanjian,ZHAO Tianna,MIAO Duoqian.Granule-based label enhancement in label distribution learning[J].CAAI Transactions on Intelligent Systems,2023,18(2):390-398.[doi:10.11992/tis.202208015]
Copy

Granule-based label enhancement in label distribution learning

References:
[1] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8): 1819–1837.
[2] GIBAJA E, VENTURA S. A tutorial on multilabel learning[J]. ACM computing surveys, 2015, 47(3): 52.
[3] 耿新, 徐宁. 标记分布学习与标记增强[J]. 中国科学:信息科学, 2018, 48(5): 521–530
GENG Xin, XU Ning. Label distribution learning and label enhancement[J]. Scientia sinica (informationis), 2018, 48(5): 521–530
[4] YAO Yiyang, WANG Luo, ZHANG Luming, et al. Learning latent stable patterns for image understanding with weak and noisy labels[J]. IEEE transactions on cybernetics, 2019, 49(12): 4243–4252.
[5] 曾雪强, 华鑫, 刘平生, 等. 基于情感轮和情感词典的文本情感分布标记增强方法[J]. 计算机学报, 2021, 44(6): 1080–1094
ZENG Xueqiang, HUA Xin, LIU Pingsheng, et al. Emotion wheel and lexicon based text emotion distribution label enhancement method[J]. Chinese journal of computers, 2021, 44(6): 1080–1094
[6] GENG Xin. Label distribution learning[J]. IEEE transactions on knowledge and data engineering, 2016, 28(7): 1734–1748.
[7] SHAO Ruifeng, XU Ning, GENG Xin. Multi-label learning with label enhancement[C]//IEEE International Conference on Data Mining. Singapore: IEEE, 2018: 437-446.
[8] 熊传镇,钱文彬,王映龙. 基于标记增强和模糊辨识度的标记分布特征选择[J]. 数据采集与处理, 2021, 36(3): 529-543.
XIONG Chuanzhen, QIAN Wenbin, WANG Yinglong. Label enhancement and fuzzy discernibility based label distribution feature selection[J]. Journal of data acquisition and processing, 2021, 36(3): 529-543.
[9] XU Ning, LIU Yunpeng, GENG Xin. Label enhancement for label distribution learning[J]. IEEE transactions on knowledge and data engineering, 2021, 33(4): 1632–1643.
[10] EL GAYAR N, SCHWENKER F, PALM G. A study of the robustness of KNN classifiers trained using soft labels[M]//Artificial Neural Networks in Pattern Recognition. Berlin: Springer Berlin, 2006: 67?80.
[11] JIANG Xiufeng, YI Zhang, LYU Jiancheng. Fuzzy SVM with a new fuzzy membership function[J]. Neural computing and applications, 2006, 15(3/4): 268–276.
[12] LI Yukun, ZHANG Minling, GENG Xin. Leveraging implicit relative labeling-importance information for effective multi-label learning[J]. 2015 IEEE international conference on data mining, 2015: 251?260.
[13] HOU Peng, GENG Xin, ZHANG Minling. Multi-label manifold learning[J]. Proceedings of the AAAI conference on artificial intelligence, 2016, 30(1): 1680–1686.
[14] YAO Jing tao, VASILAKOS A V, PEDRYCZ W. Granular computing: perspectives and challenges[J]. IEEE transactions on cybernetics, 2013, 43(6): 1977–1989.
[15] 刘清,邱桃荣,刘澜. 基于非标准分析的粒计算研究[J]. 计算机学报, 2015, 38(8): 1618?1627.
LIU Qing, QIU Taorong, LIU Lan. The research of granular computing based on nonstandard analysis[J]. Chinese journal of computers, 2015, 38(8): 1618?1627.
[16] PEDRYCZ W. Granular computing for data analytics: a manifesto of human-centric computing[J]. IEEE/CAA journal of automatica sinica, 2018, 5(6): 1025–1034.
[17] 徐健锋,苗夺谦,张远健. 分段延迟代价敏感三支决策[J]. 软件学报, 2022, 33(10): 3754–3775
XU Jianfeng, MIAO Duoqian, ZHANG Yuanjian. Piece-wise delay cost-sensitive three-way decisions[J]. Journal of software, 2022, 33(10): 3754–3775
[18] 苗夺谦,高阳,吴伟志,等. 粒计算与知识发现白皮书[R]. 北京:中国人工智能学会, 2022.
MIAO Duoqian, GAO Yang, WU Weizhi, et al. White paper for granular computing and knowledge discovery[R]. Beijing: Chinese Association for Artificial Intelligence, 2022.
[19] ZHANG Yuanjian, MIAO Duoqian, ZHANG Zhifei, et al. A three-way selective ensemble model for multi-label classification[J]. International journal of approximate reasoning, 2018, 103: 394–413.
[20] ZHANG Yuanjian, MIAO Duoqian, PEDRYCZ W, et al. Granular structure-based incremental updating for multi-label classification[J]. Knowledge-based systems, 2020, 189: 105066.
[21] ZHANG Yuanjian, ZHAO Tianna, MIAO Duoqian, et al. Granular multilabel batch active learning with pairwise label correlation[J]. IEEE transactions on systems, man, and cybernetics:systems, 2022, 52(5): 3079–3091.
[22] HUANG Shengjun, ZHOU Zhihua. Multi-label learning by exploiting label correlations locally[C]//AAAI’12: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. New York: ACM, 2012: 949?955.
[23] ZHENG Xiang, JIA Xiuyi, LI Weiwei. Label distribution learning by exploiting sample correlations locally[J]. Proceedings of the AAAI conference on artificial intelligence, 2018, 32(1): 3310–3317.
[24] JIA Xiuyi, LI Zechao, ZHENG Xiang, et al. Label distribution learning with label correlations on local samples[J]. IEEE transactions on knowledge and data engineering, 2021, 33(4): 1619–1631.
[25] ZHANG Jujie, FANG Min, LI Xiao. Clustered intrinsic label correlations for multi-label classification[J]. Expert systems with applications, 2017, 81: 134–146.
[26] GENG Xin, YIN Chao, ZHOU Zhihua. Facial age estimation by learning from label distributions[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(10): 2401–2412.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems