[1]SUN Lin,LIANG Na,XU Jiucheng.Feature selection using neighborhood mutual information and feature clustering with K-means[J].CAAI Transactions on Intelligent Systems,2024,19(4):983-996.[doi:10.11992/tis.202208012]
Copy

Feature selection using neighborhood mutual information and feature clustering with K-means

References:
[1] SONG Xianfang, ZHANG Yong, GONG Dunwei, et al. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high- dimensional data[J]. IEEE transactions on cybernetics, 2022, 52(9): 9573–9586.
[2] 梁云辉, 甘舰文, 陈艳, 等. 基于对偶流形重排序的无监督特征选择算法[J]. 计算机科学, 2023, 50(7): 72–81
LIANG Yunhui, GANJianwen, CHEN Yan, et al. Unsupervised feature selection algorithm based on dual manifold re-ranking[J]. Computer science, 2023, 50(7): 72–81
[3] 侯天宝, 王爱银. 基于Stacking特征增强多粒度联级Logistic的个人信用评估[J]. 河南师范大学学报(自然科学版), 2023, 51(3): 111–122
HOU Tianbao, WANG Aiyin. Personal credit evaluation based on stacking feature enhancing multi-grained cascade logistic[J]. Journal of Henan Normal University (natural science edition), 2023, 51(3): 111–122
[4] 杨洁, 匡俊成, 王国胤, 等. 代价敏感的多粒度邻域粗糙模糊集的近似表示[J]. 计算机科学, 2023, 50(5): 137–145
YANG Jie, KUANG Juncheng, WANG Guoyin, et al. Cost-sentitive multigranulation approximation of neighborhood rough fuzzy sets[J]. Computer science, 2023, 50(5): 137–145
[5] HU Qinghua, ZHANG Lei, ZHANG David, et al. Measuring relevance between discrete and continuous features based on neighborhood mutual information[J]. Expert systems with applications, 2011, 38: 10737–10750.
[6] 孙林, 梁娜, 徐久成. 基于自适应邻域互信息与谱聚类的特征选择[J]. 山东大学学报(理学版), 2022, 57(12): 13–24
SUN Lin, LIANG Na, XU Jiucheng. Feature selection using adaptive neighborhood mutual information and spectral clustering[J]. Journal of Shandong University (nature science edition), 2022, 57(12): 13–24
[7] RAHMANIAN M, MANSOORI E. Unsupervised fuzzy multivariate symmetric uncertainty feature selection based on constructing virtual cluster representative[J]. Fuzzy sets and systems, 2022, 438: 148–163.
[8] 孙林, 秦小营, 徐久成, 等. 基于K近邻和优化分配策略的密度峰值聚类算法[J]. 软件学报, 2022, 33(4): 1390–1411
SUN Lin, QIN Xiaoying, XU Jiucheng, et al. Density peak clustering algorithm based on k-nearest neighbors and optimized allocation[J]. Journal of software, 2022, 33(4): 1390–1411
[9] 张新元, 贠卫国. 共享K近邻和多分配策略的密度峰值聚类算法[J]. 小型微型计算机系统, 2023, 44(1): 75–82
ZHANG Xinyuan, YUN Weiguo. Sharing K-nearest neighbors and multiple assignment policies density peaks[J]. Journal of chinese computer systems, 2023, 44(1): 75–82
[10] 孙林, 李梦梦, 徐久成. 二进制哈里斯鹰优化及其特征选择算法[J]. 计算机科学, 2023, 50(5): 277–291
SUN Lin, LI Mengmeng, XU Jiucheng. Binary Harris hawk optimization and its feature selection algorithm[J]. Computer science, 2023, 50(5): 277–291
[11] 曹栋涛, 舒文豪, 钱进. 基于粗糙集与密度峰值聚类的特征选择算法[J]. 计算机科学, 2023, 50(10): 37–47
CAO Dongtao, SHU Wenhao, QIAN Jin. Feature selection algorithm based on rough setand density peak clustering[J]. Computer science, 2023, 50(10): 37–47
[12] 徐天杰, 王平心, 杨习贝. 基于人工蜂群的三支k-means聚类算法[J]. 计算机科学, 2023, 50(6): 116–121
XU Tianjie, WANG Pingxin, YANG Xibei. Three-way k-means clustering based on artificial bee colony[J]. Computer science, 2023, 50(6): 116–121
[13] 李冰晓, 万睿之, 朱永杰, 等. 基于种群分区的多策略综合粒子群优化算法[J]. 河南师范大学学报(自然科学版), 2022, 50(3): 85–94
LI Bingxiao, WAN Ruizhi, ZHU Yongjie, et al. Multi-strategy comprehensive particle swarm optimization algorithm based on population partition[J]. Journal of Henan Normal University (natural science edition), 2022, 50(3): 85–94
[14] CHEN Zhijun, CHEN Qiushi, ZHANG Yishi, et al. Clustering-based feature subset selection with analysis on the redundancy-complementarity dimension[J]. Computer communications, 2021, 168: 65–74.
[15] SUN Lin, QIN Xiaoying, DING Weiping, et al. Nearest neighbors-based adaptive density peaks clustering with optimized allocation strategy[J]. Neurocomputing, 2022, 473: 159–181.
[16] 辛永杰, 蔡江辉, 贺艳婷, 等. 基于跨结构特征选择和图循环自适应学习的多视图聚类[J/OL]. 计算机科学, 2024. [2024-05-14]. https://link.cnki.net/urlid/50.1075.tp.20240513.1427.017.
XIN Yongjie, CAI Jianghui, HE Yanting et al. Multi-view clustering based on cross-structural feature selection and graph cycle adaptive learning[J/OL]. Computer science, 2024. [2024-05-14]. https://link.cnki.net/urlid/50.1075.tp.20240513.1427.017.
[17] 孙林, 马天娇. 基于中心偏移的Fisher score与直觉邻域模糊熵的多标记特征选择[J/OL]. 计算机科学, (2023-11-14)[2023-12-06]. https://link.cnki.net/urlid/50.1075.TP.20231113.1009.012.
SUN Lin, MA Tianjiao. Multilabel feature selection using fisher score with center shift and neighborhood intuitionistic fuzzy entropy[J/OL]. Computer science, (2023-11-14)[2023-12-06].https://link.cnki. net/urlid/50.1075.TP.20231113.1009.012.
[18] 赵燕伟, 朱芬, 桂方志, 等. 基于可拓距的改进K-means聚类算法[J]. 智能系统学报, 2020, 15(2): 344–351
ZHAO Yanwei, ZHU Fen, GUI Fangzhi, et al. Improved K-means algorithm based on extension distance[J]. CAAI transactions on intelligent systems, 2020, 15(2): 344–351
[19] 王雷, 杜亮, 周芃. 基于稀疏连接的层次化多核K-Means算法[J]. 计算机科学, 2023, 50(2): 138–145
WAND Lei, DU Liang, ZHOU Peng. Hierarchical multiple kernel K-means algorithm based on sparse connectivity[J]. Computer science, 2023, 50(2): 138–145
[20] GUSTAVO S C, MIGUEL G T, SANTIAGO G G, et al. A multivariate approach to the symmetrical uncertainty measure: Application to feature selection problem[J]. Information sciences, 2019, 494: 1–20.
[21] ZHU Xiaoyan, WANG Yu, LI Yingbin, et al. A new unsupervised feature selection algorithm using similarity-based feature clustering[J]. Computational intelligence, 2019, 35(1): 2–22.
[22] ALHELALI B, CHEN Qi, XUE Bing, et al. A new imputation method based on genetic programming and weighted KNN for symbolic regression with incomplete data[J]. Soft computing, 2021, 25(8): 5993–6012.
[23] SUN Lin, ZHANG Jiuxiao, DING Weiping, et al. Mixed measure-based feature selection using the Fisher score and neighborhood rough sets[J]. Applied intelligence, 2022, 52: 17264–17288.
[24] ZHANG Li, CHEN Xiaobo. Feature selection methods based on symmetric uncertainty coefficients and independent classification information[J]. IEEE access, 2021, 9: 13845–13856.
[25] LIN Xiaohui, LI Chao, REN Wenjie, et al. A new feature selection method based on symmetrical uncertainty and interaction gain[J]. Computational biology and chemistry, 2019, 83: 107149.
[26] RAHMANIAN M, MANSOORI E G. An unsupervised gene selection method based on multivariate normalized mutual information of genes[J]. Chemometrics and intelligent laboratory systems, 2022, 222: 104512.
[27] FAIVISHEVSKY L, GOLDBERGER J. Unsupervised feature selection based on non-parametric mutual information[C]// 2012 IEEE international workshop on machine learning for signal processing. Santander: IEEE, 2012: 1-6.
[28] SUN Xin, LIU Yanheng, WEI Da, et al. Selection of interdependent genes via dynamic relevance analysis for cancer diagnosis[J]. Journal of biomedical informatics, 2013, 46(2): 252–258.
[29] WANG Jun, WEI Jinmao, YANG Zhenglu, et al. Feature selection by maximizing independent classification information[J]. IEEE transactions on knowledge and data engineering, 2017, 29(4): 828–841.
[30] MACQUEEN J. B. Some methods for classification and analysis of multivariate observations[C]//Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Los Angeles: University of California Press, 1967: 281-297.
[31] KAUFMAN L, ROUSSEEUW P J. Finding groups in data: an introduction to cluster analysis[M]. Hoboken: Wiley Online Library, 1991.
[32] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2th International Conference on Knowledge Discovery and Data Mining. Muenchen: AAAI Press, 1996: 226–231.
[33] ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS: ordering points to identify the clustering structure [C]//Proceedings of ACM SIGMOD International Conference on Management of Data. New York: ACM, 1999: 49–60.
[34] ZENG Zilin, ZHANG Hongjun, ZHANG Rui, et al. A novel feature selection method considering feature interaction[J]. Pattern recognition, 2015, 48(8): 2656–2666.
[35] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874–881
LIU Jie, ZHANG Ping, GAO Wanfu. Feature selection method based on conditional relevance[J]. Journal of Jilin University (engineering and technology edition), 2018, 48(3): 874–881
[36] 孙林, 徐枫, 李硕, 等. 基于ReliefF和最大相关最小冗余的多标记特征选择[J]. 河南师范大学学报(自然科学版), 2023, 51(6): 21–29
SUN Lin, XU Feng, LI Shuo, et al. Multilabel feature selection algorithm using ReliefF and mRMR[J]. Journal of Henan Normal University (natural science edition), 2023, 51(6): 21–29
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems