[1]ZHAO Zhenbing,WANG Rui,ZHAO Wenqing,et al.Pin-missing bolts recognition method for transmission lines based on graph knowledge reasoning[J].CAAI Transactions on Intelligent Systems,2023,18(2):372-380.[doi:10.11992/tis.202205004]
Copy

Pin-missing bolts recognition method for transmission lines based on graph knowledge reasoning

References:
[1] 周远翔, 陈健宁, 张灵, 等. “双碳”与“新基建”背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47(7): 2396–2408
ZHOU Yuanxiang, CHEN Jianning, ZHANG Ling, et al. Opportunity for developing ultra high voltage transmission technology under the emission peak, carbon neutrality and new infrastructure[J]. High voltage engineering, 2021, 47(7): 2396–2408
[2] 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47–59
XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: contribution, key techniques, and challenges[J]. Advanced engineering sciences, 2022, 54(1): 47–59
[3] YAN Guangjian, LI Chaoyang, ZHOU Guoqing, et al. Automatic extraction of power lines from aerial images[J]. IEEE geoscience and remote sensing letters, 2007, 4(3): 387–391.
[4] 傅博, 姜勇, 王洪光, 等. 输电线路巡检图像智能诊断系统[J]. 智能系统学报, 2016, 11(1): 70–77
FU Bo, JIANG Yong, WANG Hongguang, et al. Intelligent diagnosis system for patrol check images of power transmission lines[J]. CAAI transactions on intelligent systems, 2016, 11(1): 70–77
[5] MAO Tianqi, HUANG Kai, ZENG Xianwu, et al. Development of power transmission line defects diagnosis system for UAV inspection based on binocular depth imaging technology[C]//2019 2nd International Conference on Electrical Materials and Power Equipment. Guangzhou: IEEE, 2019: 478?481.
[6] 赵振兵, 张帅, 蒋炜, 等. 基于DBSCAN-FPN的输电线路螺栓缺销检测方法[J]. 中国电力, 2021, 54(3): 45–54
ZHAO Zhenbing, ZHANG Shuai, JIANG Wei, et al. Detection method for bolts with mission pins on transmission lines based on DBSCAN-FPN[J]. Electric power, 2021, 54(3): 45–54
[7] ZHAO Zhenbing, QI Hongyu, QI Yincheng, et al. Detection method based on automatic visual shape clustering for pin-missing defect in transmission lines[J]. IEEE transactions on instrumentation and measurement, 2020, 69(9): 6080–6091.
[8] HE Hui, LI Yuchen, YANG Jing, et al. Pin-missing defect recognition based on feature fusion and spatial attention mechanism[J]. Energy reports, 2022, 8: 656–663.
[9] WANG Hongchao, SHAO Yunfeng, ZOU Suli, et al. Detection of cotter pins missing of connection fittings on transmission lines of power system[C]//2021 40th Chinese Control Conference. Shanghai: IEEE, 2021: 6873?6879.
[10] LIN Z, LIANG Y, JIANG Q. A bolt defect recognition algorithm based on attention model[C]// Proceedings of the 7th International Conference on Fuzzy Systems and Data Mining. Seoul: IEEE, 2021: 86?93.
[11] 王凯, 王健, 刘刚, 等. 基于辅助数据RetinaNet算法的销钉缺陷智能识别[J]. 广东电力, 2019, 32(9): 41–48
WANG Kai, WANG Jian, LIU Gang, et al. RetinaNet algorithm based on auxiliary data for intelligent identification on pin defects[J]. Guangdong electric power, 2019, 32(9): 41–48
[12] 张珂, 何颖宣, 赵凯, 等. 可变形NTS-Net的螺栓属性多标签分类[J]. 中国图象图形学报, 2021, 26(11): 2582–2593
ZHANG Ke, HE Yingxuan, ZHAO Kai, et al. Multi-label classification method of bolt attributes based on deformable NTS-Net[J]. Journal of image and graphics, 2021, 26(11): 2582–2593
[13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[14] 赵强主编. 白俊峰, 陈建华编写. 输电线路金具理论与应用[M]. 北京: 中国电力出版社, 2013.
[15] OGUZ YAZICI V, GONZALEZ-GARCIA A, RAMISA A, et al. Orderless recurrent models for multi-label classification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13437?13446.
[16] LI Dangwei, CHEN Xiaotang, HUANG Kaiqi. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios[C]//2015 3rd IAPR Asian Conference on Pattern Recognition. Kuala Lumpur: IEEE, 2015: 111?115.
[17] ZHOU Fengtao, HUANG Sheng, XING Yun. Deep semantic dictionary learning for multi-label image classification[J]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021, 35(4): 3572–3580.
[18] NGUYEN H D, VU X S, LE D T. Modular graph transformer networks for multi-label image classification[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(10): 9092–9100.
[19] Fu K, Li J, Ma L, et al. Intrinsic relationship reasoning for small object detection[EB/OL]. (2020?09?02)[2022?05?11].https://arxiv.org/abs/2009.00833.
[20] CHEN Zhaomin, WEI Xiushen, WANG Peng, et al. Multi-label image recognition with graph convolutional networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5172?5181.
[21] GAO Binbin, ZHOU Hongyu. Learning to discover multi-class attentional regions for multi-label image recognition[J]. IEEE transactions on image processing:a publication of the IEEE Signal Processing Society, 2021, 30: 5920–5932.
[22] ZHAO Jiawei, YAN Ke, ZHAO Yifan, et al. Transformer-based dual relation graph for multi-label image recognition[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 163?172.
[23] YE Jin, HE Junjun, PENG Xiaojiang, et al. Attention-driven dynamic graph convolutional network for multi-label image recognition[C]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 649?665.
[24] LIU Yong, WANG Ruiping, SHAN Shiguang, et al. Structure inference net: object detection using scene-level context and instance-level relationships[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6985?6994.
[25] 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237–246
ZHAI Yongjie, YANG Xu, ZHAO Zhenbing, et al. Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J]. CAAI transactions on intelligent systems, 2021, 16(2): 237–246
[26] KIPF T N, Welling M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017?02?22)[2022?05?11].https://arxiv.org/abs/1609.02907.
[27] XIE R, LIU Z, SUN M. Representation learning of knowledge graphs with hierarchical types[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016: 2965?2971.
[28] EVERINGHAM M, GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2): 303–338.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems