[1]SUN Le,WANG Shitong.Doubly adversarial manifold propagation on uncertain pairwise constraints[J].CAAI Transactions on Intelligent Systems,2023,18(2):270-281.[doi:10.11992/tis.202202025]
Copy

Doubly adversarial manifold propagation on uncertain pairwise constraints

References:
[1] FU Z Y, LU Z W. Pairwise constraint propagation: a survey[J]. Computer science, 2015, 1(3): 161–164.
[2] 付振勇. 成对约束传递方法及其在约束聚类问题中的应用研究[D]. 上海: 上海交通大学, 2012.
FU Zhenyong. Studies on pairwise constraint propagation and its applications in the constrained clustering tasks[D]. Shanghai: Shanghai Jiao Tong University, 2012.
[3] WAGASTAFF K, CARDIE C, ROGERS S, et al. Constrained k-means clustering with background knowledge[C]// Eighteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 2001: 577?584.
[4] KLEIN D. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering[J]. Proceedings of the Nineteenth International Conference on Machine Learning, 2002, 12(7): 307–314.
[5] BASU S, BILENKO M, MOONEY R J. A probabilistic framework for semi-supervised clustering[C]// Proceedings of the 10th Association for Computing Machinery (ACM) Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD) International Conference on Knowledge Discovery and Data Mining. Seattle: Dept. of Computer Sciences University of Texas at Austin, 2004: 59?68.
[6] KULIS B, BASU S, DHILLON I, et al. Semi-supervised graph clustering: a kernel approach[J]. Machine learning, 2009, 74(1): 1–22.
[7] 卞则康, 王士同. 基于混合距离学习的鲁棒的模糊C均值聚类算法[J]. 智能系统学报, 2017, 12(4): 450–458
BIAN Zekang, WANG Shitong. Robust FCM clustering algorithm based on hybrid-distance learning[J]. CAAI transactions on intelligent systems, 2017, 12(4): 450–458
[8] WANG D, GAO X B, WANG X M. Semi-supervised nonnegative matrix factorization via constraint propagation[J]. IEEE transactions on cybernetics, 2016, 46(1): 233–244.
[9] CHEN S G, ZHANG D Q. Semi-supervised dimensionality reduction with pairwise constraints for hyperspectral image classification[J]. IEEE geoscience and remote sensing letters, 2011, 8(2): 369–373.
[10] 钱进,罗鼎. 基于成对约束半监督降维的高光谱遥感影像特征提取[J]. 遥感技术与应用, 2014, 29(4): 681–688
QIAN Jin, LUO Ding. Feature extraction from hyperspectral remote sensing imagery based on semisupervised dimensionality reduction with pairwise constraints[J]. Remote sensing technology and application, 2014, 29(4): 681–688
[11] LIU Mingxia, ZHANG Daoqiang. Pairwise constraint-guided sparse learning for feature selection[J]. IEEE transactions on cybernetics, 2017, 46(2): 298–310.
[12] 赵帅, 张雁, 徐海峰. 基于成对约束分的特征选择及稳定性评价[J]. 计算机与数字工程, 2019, 47(6): 1441–1445
ZHAO Shuai, ZHANG Yan, XU Haifeng. Feature selection and stability evaluation based on pairwise constraint score[J]. Computer & digital engineering, 2019, 47(6): 1441–1445
[13] XING E P, NG A Y, JORDAN M I, et al. Distance metric learning with application to clustering with side-information[C]// Advances in Neural Information Processing Systems. Cambridge, Boston: Massachusetts Institute of Technology Press, 2002: 318?326.
[14] HOI S C H, LIU Wei, LYU M R, et al. Learning distance metrics with contextual constraints for image retrieval[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: 2072?2078.
[15] LIU Wei, MA Shiqian, TAO Dacheng, et al. Semi-supervised sparse metric learning using alternating linearization optimization[C]// Acm Sigkdd International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2010: 1139?1148.
[16] FU Zhenyong, LU Zhiwu, IP H H S, et al. Local similarity learning for pairwise constraint propagation[J]. Multimedia tools and applications, 2015, 74(11): 3739–3758.
[17] 刘笑, 陈家炜, 胡峻林. 用于亲属关系鉴别的成对约束组合度量学习[J]. 山东大学学报(工学版), 2022, 52(2): 50–56
LIU Xiao, CHEN Jiawei, HU Junlin. Pairwise constrained compositional metric learning for kinship verification[J]. Journal of Shandong University (engineering science edition), 2022, 52(2): 50–56
[18] YAN Rong, ZHANG Jian, YANG Jie, et al. A discriminative learning framework with pairwise constraints for video object classification[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(4): 578–593.
[19] LU Zhengdong, CARREIRA-PERPINAN M A. Constrained spectral clustering through affinity propagation[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008: 1?8.
[20] LI Z, LIU J, TANG X. Pairwise constraint propagation by semidefinite programming for semi-supervised classification[C]//Machine Learning, Proceedings of the Twenty-Fifth International Conference. Helsinki, Finland, 2008: 264?272.
[21] YU S X, SHI J B. Segmentation given partial grouping constraints[J]. IEEE transactions on pattern analysis and machine intelligence, 2004, 26(2): 173–183.
[22] LU Z, PENG Y. Exhaustive and efficient constraint propagation: a graph-based learning approach and its applications[J]. International journal of computer vision, 2013, 103(3): 306–325.
[23] JIA Y, LIU H, HOU J. Pairwise constraint propagation with dual adversarial manifold regularization[J]. IEEE transactions on neural networks and learning systems., 2020, 31(12): 5575–5587.
[24] LU Z, PENG Y. Heterogeneous constraint propagation with constrained sparse representation[C]// IEEE International Conference on Data Mining. Dallas: IEEE, 2013.
[25] FU Z, IP H S, LU H, et al. Multi-modal constraint propagation for heterogeneous image clustering[C] //Proceedings of the 19th ACM international conference on Multimedia. Scottsdale: ACM, 2011: 143–152.
[26] BERAHMAND K, ROSTOMI M, FOROUZANDEH S. A novel method of constrained feature selection by the measurement of pairwise constraints uncertainty[J]. Journal of big data, 2020, 83(7): 483–504.
[27] 郑静, 熊伟丽. 基于互信息的多块k近邻故障监测及诊断[J]. 智能系统学报, 2021, 16(4): 717–728
ZHENG Jing, XIONG Weili. Multiblock k-nearest neighbor fault monitoring and diagnosis based on mutual information[J]. CAAI transactions on intelligent systems, 2021, 16(4): 717–728
[28] LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]// International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2000: 535–541.
[29] 卞则康, 张进, 王士同. 基于类标感知的KNN分类算法[J]. 模式识别与人工智能, 2021, 34(10): 873–884
BIAN Zekang, ZHANG Jin, WANG Shitong. Class-aware based KNN classification method[J]. Pattern recognition and artificial intelligence, 2021, 34(10): 873–884
[30] FU Z Y, LU Z W, IP H, et al. Symmetric graph regularized constraint propagation[J]. Proceedings of the AAAI conference on artificial intelligence, 2011, 25(1): 350–355.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems