[1]YIN Jianhua,LIU Zhenbing,WEI Huangzhao.Partial label classification algorithm based on sparse reconstruction disambiguation[J].CAAI Transactions on Intelligent Systems,2023,18(4):708-718.[doi:10.11992/tis.202202024]
Copy

Partial label classification algorithm based on sparse reconstruction disambiguation

References:
[1] COUR T, SAPP B, JORDAN C, et al. Learning from ambiguously labeled images[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 919?926.
[2] ZENG Zinan, XIAO Shijie, JIA Kui, et al. Learning by associating ambiguously labeled images[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 708?715.
[3] COUR T, SAPP B, TASKAR B. Learning from partial labels[J]. Journal of machine learning research, 2011, 12: 1501–1536.
[4] CHEN Yichen, PATEL V M, CHELLAPPA R, et al. Ambiguously labeled learning using dictionaries[J]. IEEE transactions on information forensics and security, 2014, 9(12): 2076–2088.
[5] GONG Chen, LIU Tongliang, TANG Yuanyan, et al. A regularization approach for instance-based superset label learning[J]. IEEE transactions on cybernetics, 2018, 48(3): 967–978.
[6] LIU Liping, DIETTERICH T G. A conditional multinomial mixture model for superset label learning[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 1. New York: ACM, 2012: 548?556.
[7] LUO Jie, ORABONA F. Learning from candidate labeling sets[J]. Neural information processing systems, 2010, 23(4): 1504-1512.
[8] SONG Jingqi, LIU Hui, GENG Fenghuan, et al. Weakly-supervised classification of pulmonary nodules based on shape characters[C]//2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing. Piscataway: IEEE, 2016: 228- 232.
[9] XIE Mingkun, HUANG Shengjun. Partial multi-label learning with noisy label identification[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(7): 3676–3687.
[10] 陈鸿昶,谢天,高超,等.候选标记信息感知的偏标记学习算法[J].电子与信息学报, 2019, 41(10):2516-2524.
CHEN Hongchang, XIE Tian, GAO Chao, et al. Candidate label-aware partial label learning algorithm[J]. Journal of electronics & information technology, 2019, 41(10): 2516-2524.
[11] ZHANG Minling, YU Fei. Solving the partial label learning problem: an instance-based approach[C]//Proceedings of the 24th International Conference on Artificial Intelligence. New York: ACM, 2015: 4048?4054.
[12] ZHANG Minling, ZHOU Binbin, LIU Xuying. Partial label learning via feature-aware disambiguation[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1335?1344.
[13] GRANDVALETY, BENGIO Y. Semi-supervised Learning by entropy minimization[C]// Advances in Neural Information Processing Systems. Vancouver: MIT Press, 2004: 13?18.
[14] NGUYEN N, CARUANA R. Classification with partial labels[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2008: 551?559.
[15] FENG Lei, AN Bo. Partial label learning by semantic difference maximization[C]// Proceeding of the 28th International Joint Conference on Artificial Intelligence. MacauL AAAI Press, 2019: 2294?2300.
[16] FENG Lei, AN Bo. Leveraging latent label distributions for partial label learning[C]// 27th International Joint Conference on Artificial Intelligence, Stockholm: AAAI Press, 2018: 2107-2113.
[17] 周斌斌,张敏灵,刘胥影. 基于三元纠错输出编码的偏标记学习算法[J]. 计算机科学与探索, 2018, 12(9): 1444–1453
ZHOU Binbin, ZHANG Minling, LIU Xuying. Ternary error-correcting output codes based partial label learning algorithm[J]. Journal of frontiers of computer science and technology, 2018, 12(9): 1444–1453
[18] ZHANG Minling, YU Fei, TANG Caizhi. Disambiguation-free partial label learning[J]. IEEE transactions on knowledge and data engineering, 2017, 29(10): 2155–2167.
[19] YU Fei, ZHANG Minling. Maximum margin partial label learning[J]. Machine learning, 2017, 106(4): 573–593.
[20] CHAI Jing, TSANG I W, CHEN Weijie. Large margin partial label machine[J]. IEEE transactions on neural networks and learning systems, 2020, 31(7): 2594–2608.
[21] TANG Caizhi, ZHANG Minling. Confidence-rated discriminative partial label learning[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. New York: ACM, 2017: 2611?2617.
[22] XU Ning, LYU Jiaqi, GENG Xin. Partial label learning via label enhancement[C]// Proceedings of the AAAI conference on artificial intelligence. Honolulu: ACM, 2019: 5557?5564.
[23] YAN Yan, GUO Yuhong. Partial label learning with batch label correction[J]. Proceedings of the AAAI conference on artificial intelligence. New York: ACM, 2020: 6575?6582.
[24] FENG Lei, AN Bo. Partial label learning with self-guided retraining[C]// Proceedings of the AAAI conference on artificial intelligence. Honolulu: ACM, 2019: 3542?3549.
[25] YAO Yao, DENG Jiehui, CHEN Xiuhua, et al. Deep discriminative CNN with temporal ensembling for ambiguously-labeled image classification[C]// Proceedings of the AAAI conference on artificial intelligence. New York: ACM, 2020: 12669?12676.
[26] YAO Yao, GONG Chen, DENG Jiehui, et al. Network cooperation with progressive disambiguation for partial label learning[M]. Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2021: 471?488.
[27] LYU Jiaqi, XU Miao, FENG Lei, et al. Progressive identification of true labels for partial-label learning[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 6500?6510.
[28] WANG Dengbao, ZHANG Minling, LI Li. Adaptive graph guided disambiguation for partial label learning[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(12): 8796–8811.
[29] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and trends in machine learning, 2011, 3(1): 1–122.
[30] GABRIEL V, PACHECO, LACIANO C A, et al. Distributed parameterized predictive control for multi-robot curve tracking[J]. IFAC-papersonLine, 2020, 53(2): 3144–3149.
[31] GORSKI J, PFEUFFER F, KLAMROTH K. Biconvex sets and optimization with biconvex functions: a survey and extensions[J]. Mathematical methods of operations research, 2007, 66(3): 373–407.
[32] ZHOU Dengyong, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems. New York: ACM, 2003: 321?328.
[33] PANIS G, LANITIS A. An overview of research activit ies in facial age estimation using the FG-NET aging data base[C]//European Conference on Computer Vision. Switzerland: Springer, 2014: 737-750.
[34] LYU Gengyu, FENG Songhe, LI Yidong, et al. HERA: partial label learning by combining heterogeneous loss with sparse and low-rank regularization[J]. ACM transactions on intelligent systems and technology, 2020, 11(3): 1–19.
[35] HUISKES M J, LEW M S. The MIR flickr retrieval evaluation[C]//Proceedings of the 1st ACM international conference on Multimedia information retrieval. New York: ACM, 2008: 39?43.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems