[1]CHEN Lingling,BI Xiaojun.Sleep staging model based on multimodal fusion[J].CAAI Transactions on Intelligent Systems,2022,17(6):1194-1200.[doi:10.11992/tis.202202018]
Copy

Sleep staging model based on multimodal fusion

References:
[1] BERRY R B, BUDHIRAJA R, GOTTLIEB D J, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events[J]. Journal of clinical sleep medicine, 2012, 8(5): 597–619.
[2] 王菡侨. 有关美国睡眠医学学会睡眠分期的最新判读标准指南解析[J]. 诊断学理论与实践, 2009, 8(6): 575–578
WANG Hanqiao. Analysis of the latest guidelines for sleep staging of the american academy of sleep medicine[J]. Journal of diagnostics concepts & practice, 2009, 8(6): 575–578
[3] ZHANG Linda, FABBRI D, UPENDER R, et al. Automated sleep stage scoring of the sleep heart health study using deep neural networks[J]. Sleep, 2019, 42(11): zsz159.
[4] ZHAO Dechun, WANG Yi, WANG Qiangqiang, et al. Comparative analysis of different characteristics of automatic sleep stages[J]. Computer methods and programs in biomedicine, 2019, 175: 53–72.
[5] FAUST O, RAZAGHI H, BARIKA R, et al. A review of automated sleep stage scoring based on physiological signals for the new millennia[J]. Computer methods and programs in biomedicine, 2019, 176: 81–91.
[6] VILAMALA A, MADSEN K H, HANSEN L K. Deep convolutional neural networks for interpretable analysis of EEG sleep stage scoring[C]//2017 IEEE 27th International Workshop on Machine Learning for Signal Processing. Tokyo: IEEE, 2017: 1-6.
[7] HUMAYUN A I, SUSHMIT A S, HASAN T, et al. End-to-end sleep staging with raw single channel EEG using deep residual ConvNets[C]//2019 IEEE EMBS International Conference on Biomedical & Health Informatics. Chicago: IEEE, 2019: 1-5.
[8] 贾子钰, 林友芳, 张宏钧, 等. 基于深度卷积神经网络的睡眠分期模型[J]. 浙江大学学报(工学版), 2020, 54(10): 1899–1905
JIA Ziyu, LIN Youfang, ZHANG Hongjun, et al. Sleep stage classification model based on deep convolutional neural network[J]. Journal of Zhejiang University (engineering science edition), 2020, 54(10): 1899–1905
[9] FERNANDEZ-BLANCO E, RIVERO D, PAZOS A. EEG signal processing with separable convolutional neural network for automatic scoring of sleeping stage[J]. Neurocomputing, 2020, 410: 220–228.
[10] PHAN H, ANDREOTTI F, COORAY N, et al. Joint classification and prediction CNN framework for automatic sleep stage classification[J]. IEEE transactions on biomedical engineering, 2019, 66(5): 1285–1296.
[11] JADHAV P, RAJGURU G, DATTA D, et al. Automatic sleep stage classification using time-frequency images of CWT and transfer learning using convolution neural network[J]. Biocybernetics and biomedical engineering, 2020, 40(1): 494–504.
[12] YüCELBA? C, YüCELBA? ?, ?Z?EN S, et al. Effect of the Hilbert-Huang transform method on sleep staging[C]//2017 25th Signal Processing and Communications Applications Conference (SIU). Antalya: IEEE, 2017: 1-4.
[13] LOH H W, OOI C P, VICNESH J, et al. Automated detection of sleep stages using deep learning techniques: a systematic review of the last decade (2010–2020)[J]. Applied sciences, 2020, 10(24): 8963.
[14] SOKOLOVSKY M, GUERRERO F, PAISARNSRISOMSUK S, et al. Deep learning for automated feature discovery and classification of sleep stages[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2020, 17(6): 1835–1845.
[15] DUAN Lijuan, LI Mengying, WANG Changming, et al. A novel sleep staging network based on data adaptation and multimodal fusion[J]. Frontiers in human neuroscience, 2021, 15: 727139.
[16] ZHAO Minghang, ZHONG Shisheng, FU Xuyun, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE transactions on industrial informatics, 2020, 16(7): 4681–4690.
[17] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[18] 张峰, 李希城, 董春茹, 等. 基于深度情感唤醒网络的多模态情感分析与情绪识别[J]. 控制与决策, 2022, 37(11): 2984–2992
ZHANG Feng, LI Xicheng, DONG Chunru, et al. Deep emotional arousal network for multimodal sentiment analysis and emotion recognition[J]. Control and decision, 2022, 37(11): 2984–2992
[19] WANG Yansen, SHEN Ying, LIU Zhun, et al. Words can shift: dynamically adjusting word representations using nonverbal behaviors[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: Assoc Advancement Artifical Intelligence, 2019: 7216-7223.
[20] ABDELHAMEED A M, DAOUD H G, BAYOUMI M. Deep convolutional bidirectional LSTM recurrent neural network for epileptic seizure detection[C]//2018 16th IEEE International New Circuits and Systems Conference. Montreal: IEEE, 2018: 139-143.
[21] KEMP B, ZWINDERMAN A H, TUK B, et al. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG[J]. IEEE transactions on bio-medical engineering, 2000, 47(9): 1185–1194.
[22] GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): E215–E220.
[23] ZHANG Lei, CHEN Dan, CHEN Peilu, et al. Dual-CNN based multi-modal sleep scoring with temporal correlation driven fine-tuning[J]. Neurocomputing, 2021, 420: 317–328.
[24] PHAN H, CHéN O Y, KOCH P, et al. Towards more accurate automatic sleep staging via deep transfer learning[J]. IEEE transactions on biomedical engineering, 2021, 68(6): 1787–1798.
[25] YAN Rui, LI Fan, ZHOU Dong dong, et al. Automatic sleep scoring: a deep learning architecture for multi-modality time series[J]. Journal of neuroscience methods, 2021, 348: 108971.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems