[1]LIAO Xin,SHI Meifeng,CHEN Yuan.Adaptive multi-point crossover genetic algorithm for solving continuous distributed constraint optimization problems[J].CAAI Transactions on Intelligent Systems,2023,18(4):793-802.[doi:10.11992/tis.202202017]
Copy

Adaptive multi-point crossover genetic algorithm for solving continuous distributed constraint optimization problems

References:
[1] 段沛博, 张长胜, 张斌. 分布式约束优化方法研究进展[J]. 软件学报, 2016, 27(2): 264–279
ALLAN R L, FABRICIO E, JEAN P A. Distributed constraint optimization problems: review and perspectives[J]. Expert systems with applications, 2016, 27(2): 264–279
[2] 邓衍晨. 求解分布式约束优化问题的推理算法研究[D]. 重庆: 重庆大学, 2018.
DENG Yanchen. The study on inference-based algorithms for distributed constraint optimization problems[D]. Chongqing: Chongqing University, 2018.
[3] SULTANIK E A, MODI P J, REGLI W C. On modeling multiagent task scheduling as a distributed constraint optimization problem[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence. New York: ACM, 2007: 1531?1536.
[4] 马瑞, 金艳, 刘鸣春. 基于机会约束规划的主动配电网分布式风光双层优化配置[J]. 电工技术学报, 2016, 31(3): 145–154
MA Rui, JIN Yan, LIU Mingchun. Bi-level optimal configuration of distributed wind and photovoltaic generations in active distribution network based on chance constrained programming[J]. Transactions of China electrotechnical society, 2016, 31(3): 145–154
[5] 吴玲, 张朱峰, 吴威. 基于分布式约束优化的多UCAV协同任务分配[J]. 海军工程大学学报, 2018, 30(6): 64–68
BARTHS A, ENEMBRECK F. Distributed constraint optimization with MULBS: a case study on collaborative meeting scheduling[J]. Journal of network and computer applications, 2018, 30(6): 64–68
[6] FERDINANDO F, ENRICO P, WILLIAM Y. A multiagent system approach to scheduling devices in smart homes[C]// Proceedings of the 16th Conference on Autonomous Agents and Multi-Agent Systems. Paulo: AAMAS Press, 2017: 981–989.
[7] MULDOON C, O’HARE G M P, O’GRADY M J, et al. Distributed constraint optimization for resource limited sensor networks[J]. Science of computer programming, 2013, 78(5): 583–593.
[8] 雷兴明, 邢昌风, 吴玲. 基于分布式约束优化的武器目标分配问题研究[J]. 计算机工程, 2012, 38(7): 128–130
CHENG Shanjun, RAJA A, XIE Jiang. Dynamic multiagent load balancing using distributed constraint optimization techniques[J]. Web intelligence and agent systems, 2012, 38(7): 128–130
[9] JMODI P J, SHEN W M, TAMBE M. Adopt: asynchronous distributed constraint optimization with quality guarantees[J]. Artificial intelligence, 2005, 161(1/2): 149–180.
[10] PETCU A, FALTINGS B. A scalable method for multiagent constraint optimization[C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence. New York: ACM, 2005: 266?271.
[11] LITOV O, MEISELS A. Forward bounding on pseudo-trees for DCOPs and ADCOPs[J]. Artificial intelligence, 2017, 252: 83–99.
[12] ZHANG Weixiong, WANG Guandong, ZHAO Xing, et al. Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks[J]. Artificial intelligence, 2005, 161(1/2): 55–87.
[13] FARINELLI A, ROGERS A, PETCU A, et al. Decentralised coordination of low-power embedded devices using the max-sum algorithm[C]// Proceedings of the 7th International Joint Conference on Autonomous Agents and Multi-Agent Systems. Estoril: AAMAS Press, 2008: 639–646.
[14] MAHESWARAN R T, PEARCE J P, TAMBE M. A family of graphical-game-based algorithms for distributed constraint optimization problems[J]. Coordination of large-scale multiagent systems, 2006: 127–146.
[15] CHEN Ziyu, WU Tengfei, DENG Yanchen, et al. An ant-based algorithm to solve distributed constraint optimization problems[C]//Proceedings of the 32th AAAI Conference on Artificial Intelligence. New Orleans: AAAI Press, 2018:4653–4661.
[16] STRANDERS R, FARINELLI A, ROGERS A, et al. Decentralised coordination of continuously valued control parameters using the max-sum algorithm[C]// Proceedings of the 8th International Conference on Autonomous Agents and Multi-Agent Systems. Budapest: Springer Press, 2009: 601?608.
[17] VOICE T, STRANDERS R, ROGERS A, et al. A hybrid continuous max-sum algorithm for decentralised coordination[C]// Proceedings of the 19th European Conference on Artificial Intelligence. Lison: IOS Press, 2010: 61?66.
[18] KHOI D H, WILLIAM Y, MAKOTO Y, et al. New algorithms for continuous distributed constraint optimization problems[C]// Proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems. Auckland: Springer Press, 2020: 502?510.
[19] CHOUDHURY M, MAHMUD S, KHAN M M. A particle swarm based algorithm for functional distributed constraint optimization problems[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020:7111?7118.
[20] AMIT S, MOUMITA C, MD M K. A local search based approach to solve continuous DCOPs[C]// Proceedings of the 20th International Conference on Autonomous Agents and Multi-Agent Systems. Richland: Springer Press, 2021: 1127?1135.
[21] EIBEN A E, RAUE P E, RUTTKAY Z. Solving constraint satisfaction problems using genetic algorit-hms[C]//Proceedings of the First IEEE Conference on Evolutionary Computation. Orlando: IEEE Press, 1994:542?547.
[22] CHEN Ziyu, LIU Lizhen, HE Jingyuan, et al. A genetic algorithm based framework for local search algorithms for distributed constraint optimization problems[J]. Autonomous agents and multi-agent systems, 2020, 34(2): 41.
[23] CHEN Ziyu, HE Zhen, HE Chen. An improved DPOP algorithm based on breadth first search pseudo-tree for distributed constraint optimization[J]. Applied intelligence, 2017, 47(3): 607–623.
[24] ALBERT R, BARABASI A L. Statistical mechanics of complex networks[EB/OL]. (2001-06-09)[2022-02-22]. https://arxiv.org/abs/cond-mat/0106096.
[25] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440–442.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems