[1]SHEN Xin,WEI Lisheng.Dermoscope image segmentation method based on ARB-UNet[J].CAAI Transactions on Intelligent Systems,2023,18(4):699-707.[doi:10.11992/tis.202201030]
Copy

Dermoscope image segmentation method based on ARB-UNet

References:
[1] CI??Y?SKA M, KAMI?SKA-WINCIOREK G, LANGE D, et al. The incidence and clinical analysis of non-melanoma skin cancer[J]. Scientific reports, 2021, 11: 4337.
[2] LI Yuexiang, SHEN Linlin. Skin lesion analysis towards melanoma detection using deep learning network[J]. Sensors, 2018, 18(2): 556.
[3] SIEGEL R L, FEDEWA S A, MILLER K D, et al. Cancer statistics for hispanics/latinos, 2015[J]. CA:a cancer journal for clinicians, 2015, 65(6): 457–480.
[4] 徐国雄, 张骁, 胡进贤, 等. 基于阈值分割和轮廓提取的图像边缘检测算法[J]. 计算机技术与发展, 2015, 25(12): 64–67,71
XU Guoxiong, ZHANG Xiao, HU Jinxian, et al. Medical cell edge detection algorithm based on threshold segmentation and contour extraction[J]. Computer technology and development, 2015, 25(12): 64–67,71
[5] RIYANTO I. Morphology based melanoma skin segmentation method[J]. Helix, 2021, 11(3): 7–13.
[6] 尹雨山, 王李进, 尹义龙, 等. 回溯搜索优化算法辅助的多阈值图像分割[J]. 智能系统学报, 2015, 10(1): 68–74
YIN Yushan, WANG Lijin, YIN Yilong, et al. Backtracking search optimization algorithm assisted multilevel threshold for image segmentation[J]. CAAI transactions on intelligent systems, 2015, 10(1): 68–74
[7] 孔令军, 王茜雯, 包云超, 等. 基于深度学习的医疗图像分割综述[J]. 无线电通信技术, 2021, 47(2): 121–130
KONG Lingjun, WANG Qianwen, BAO Yunchao, et al. A survey on medical image segmentation based on deep learning[J]. Radio communciations technology, 2021, 47(2): 121–130
[8] STARVIN M S. A novel and efficient approach for the classification of skin melanoma[J]. Journal of ambient intelligence and humanized computing, 2021, 12(12): 10435–10459.
[9] LAKSHMI B V, SRIDEVI K. A qualitative approach on de-noising and segmentation algorithms for melanoma images[J]. Annals of the romanian society for cell biology, 2021: 1384-1393.
[10] FAN Haidi. Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold[J]. Computers in biology and medicine, 2017, 85: 75–85.
[11] XIE Fengying, FAN Haidi, LI Yang, et al. Melanoma classification on dermoscopy images using a neural network ensemble model[J]. IEEE transactions on medical imaging, 2017, 36(3): 849–858.
[12] GLAISTER J, WONG A, CLAUSI D A. Segmentation of skin lesions from digital images using joint statistical texture distinctiveness[J]. IEEE transactions on bio-medical engineering, 2014, 61(4): 1220–1230.
[13] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE, 2016: 640-651.
[14] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]. Cham: Springer International Publishing, 2015: 234?241.
[15] ZHOU Zongwei, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[M]. Cham: Springer International Publishing, 2018: 3?11.
[16] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net: learning where to look for the pancreas[EB/OL]. (2018-04-11)[2022-01-18].https://arxiv.org/abs/1804.03999.
[17] SARKER M M K, RASHWAN H A, AKRAM F, et al. SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks[M]. Cham: Springer International Publishing, 2018: 21?29.
[18] ZHANG Lei, YANG Guang, YE Xujiong. Automatic skin lesion segmentation by coupling deep fully convolutional networks and shallow network with textons[J]. Journal of medical imaging, 2019, 6(2): 024001.
[19] BAGHERSALIMI S, BOZORGTABAR B, SCHMID-SAUGEON P, et al. DermoNet: densely linked convolutional neural network for efficient skin lesion segmentation[J]. EURASIP journal on image and video processing, 2019, 2019(1): 71.
[20] SELLA VELUSWAMI J R, EZHIL PRASANTH M, HARINI K, et al. Melanoma skin cancer recognition and classification using deep hybrid learning[J]. Journal of medical imaging and health informatics, 2021, 11(12): 3110–3116.
[21] LIU Jing, CHEN Aibin, ZHOU Guoxiong, et al. Dermatoscopic image melanoma recognition based on CFLDnet fusion network[J]. Multimedia tools and applications, 2021, 80(17): 25477–25494.
[22] GUO Changlu, SZEMENYEI M, YI Yugen, et al. Dense residual network for retinal vessel segmentation[C]//2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 1374-1378.
[23] KAUR R, GHOLAMHOSSEINI H, SINHA R, et al. Melanoma classification using a novel deep convolutional neural network with dermoscopic images[J]. Sensors (Basel, Switzerland), 2022, 22(3): 1134.
[24] WANG Hailing, YANG Jingdong. FBUNet: full convolutional network based on fusion block architecture for biomedical image segmentation[J]. Journal of medical and biological engineering, 2021, 41(2): 185–202.
[25] CHEN Ziming, WANG Shengsheng. The NL-SC net for skin lesion segmentation[M].Pattern Recognition and Computer Vision. Cham: Springer International Publishing, 2021: 313?324.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems