[1]DI Jian,LIU Junhua,CAO Jingang.An improved HiNT text retrieval model using BERT and coverage mechanism[J].CAAI Transactions on Intelligent Systems,2024,19(3):719-727.[doi:10.11992/tis.202201020]
Copy

An improved HiNT text retrieval model using BERT and coverage mechanism

References:
[1] STADIG I, SVANBERG T. Overview of information retrieval in a hospital-based health technology assessment center in a Swedish Region[J]. International journal of technology assessment in health care, 2021, 37(1): e52.
[2] FAN Yixing, GUO Jiafeng, LAN Yanyan, et al. Modeling diverse relevance patterns in ad-hoc retrieval[C]//SIGIR ’18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor: ACM, 2018: 375–384.
[3] ROBERTSON S E, JONES K S. Relevance weighting of search terms[J]. Journal of the American society for information science, 1976, 27(3): 129–146.
[4] ROBERTSON S E, WALKER S, JONES S, et al. Okapi at TREC-3[EB/OL]. (2022–01–13)[2024–02–27]. https://api.semanticscholar.org/CorpusID:3946054.
[5] DATTA S, GANGULY D, ROY D, et al. Overview of the causality-driven adhoc information retrieval (CAIR) task at FIRE-2021[C]//Proceedings of the 13th Annual Meeting of the Forum for Information Retrieval Evaluation. Virtual Event: ACM, 2021: 25–27.
[6] 庞亮, 兰艳艳, 徐君, 等. 深度文本匹配综述[J]. 计算机学报, 2017, 40(4): 985–1003
PANG Liang, LAN Yanyan, XU Jun, et al. A survey on deep text matching[J]. Chinese journal of computers, 2017, 40(4): 985–1003
[7] HUANG Posen, HE Xiaodong, GAO Jianfeng, et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. San Francisco: ACM, 2013: 2333–2338.
[8] SHEN Yelong, HE Xiaodong, GAO Jianfeng, et al. Learning semantic representations using convolutional neural networks for web search[C]//Proceedings of the 23rd International Conference on World Wide Web. Seoul: ACM, 2014: 373–374.
[9] PALANGI H, DENG L, SHEN Y, et al. Semantic modelling with long short-tremmemory for infomation retrieval[EB/OL]. (2015–05–27)[2022–01–13]. https://arxiv.org/pdf/1412.6629.
[10] GUO Jiafeng, FAN Yixing, AI Qingyao, et al. A deep relevance matching model for ad-hoc retrieval[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. Indianapolis: ACM, 2016: 55–64.
[11] HUI Kai, YATES A, BERBERICH K, et al. PACRR: a position-aware neural IR model for relevance matching[EB/OL]. (2017–04–12)[2024–02–27]. http://arxiv.org/abs/1704.03940.pdf.
[12] HUI Kai, YATES A, BERBERICH K, et al. Co-PACRR: a context-aware neural IR model for ad-hoc retrieval[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 279–287.
[13] ALTNEL B, GANIZ M C. Semantic text classification: a survey of past and recent advances[J]. Information processing & management, 2018, 54(6): 1129–1153.
[14] MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013–01–16)[2024–02–27]. http://arxiv.org/abs/1301.3781.pdf.
[15] LU Yiwei, YANG Ruopeng, JIANG Xuping, et al. Research on military event detection method based on BERT-BiGRU-attention[C]//2021 IEEE International Conference on Consumer Electronics and Computer Engineering. Guangzhou: IEEE, 2021: 1–5.
[16] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018–10–11)[2024–02–27]. http://arxiv.org/abs/1810.04805.pdf.
[17] 于润羽, 杜军平, 薛哲, 等. 面向科技学术会议的命名实体识别研究[J]. 智能系统学报, 2022, 17(1): 50–58
YU Runyu, DU Junping, XUE Zhe, et al. Research on named entity recognition for scientific and technological conferences[J]. CAAI transactions on intelligent systems, 2022, 17(1): 50–58
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[19] JIANG Teng, ZHANG Zehan, YANG Yupu. Modeling coverage with semantic embedding for image caption generation[J]. The visual computer, 2019, 35(11): 1655–1665.
[20] 蔡银琼, 范意兴, 郭嘉丰, 等. 基于多表达的第一阶段语义检索模型[J]. 计算机工程与应用, 2023, 59(4): 139–146
CAI Yinqiong, FAN Yixing, GUO Jiafeng, et al. Multi-representation model for the first-stage semantic retrieval[J]. Computer engineering and applications, 2023, 59(4): 139–146
[21] 巩轶凡, 刘红岩, 何军, 等. 带有覆盖率机制的文本摘要模型研究[J]. 计算机科学与探索, 2019, 13(2): 205–213
GONG Yifan, LIU Hongyan, HE Jun, et al. Research on text summarization model with coverage mechanism[J]. Journal of frontiers of computer science and technology, 2019, 13(2): 205–213
[22] SEE A, LIU P J, MANNING C D. Get to the point: summarization with pointer-generator networks[EB/OL]. (2017–04–14)[2024–02–07]. http://arxiv.org/abs/1704.04368.
[23] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. (2014–06–03)[2024–02–07]. http://arxiv.org/abs/1406.1078.pdf.
[24] NGUYEN T, ROSENBERG M, SONG X, et al. A human generated machine reading comprehension dataset[EB/OL]. (2018–10–31)[2024–02–07]. https://arxiv.org/pdf/1611.09268.pdf.
[25] DAI Zhuyun, CALLAN J. Context-aware term weighting for first stage passage retrieval[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1533–1536.
[26] NOGUEIRA R, YANG Wei, LIN J, et al. Document expansion by query prediction[EB/OL]. (2019–04–07)[2024–02–07]. http://arxiv.org/abs/1904.08375.
[27] ZHAN Jingtao, MAO Jiaxin, LIU Yiqun, et al. RepBERT: contextualized text embeddings for first-stage retrieval[EB/OL]. (2020–06–28)[2024–02–07]. http://arxiv.org/abs/2006.15498.pdf.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems