[1]ZHANG Mingquan,ZHOU Hui,CAO Jingang.Dual BERT directed sentiment text classification based on attention mechanism[J].CAAI Transactions on Intelligent Systems,2022,17(6):1220-1227.[doi:10.11992/tis.202112038]
Copy

Dual BERT directed sentiment text classification based on attention mechanism

References:
[1] BING Liu. Sentiment analysis and opinion mining[M]. Switzerland: Springer Cham, 2012.
[2] HUTTO C, GILBERT E. Vader: a parsimonious rule-based model for sentiment analysis of social media text[C]//Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media. Michigan: AAAI, 2014: 216-225.
[3] PARK K, CHA M, RHIM E. Positivity bias in customer satisfaction ratings[C]//WWW’18: Companion Proceedings of the The Web Conference 2018. New York: ACM, 2018: 631-638.
[4] YOUNG L, SOROKA S. Affective news: the automated coding of sentiment in political texts[J]. Political communication, 2012, 29(2): 205–231.
[5] O’CONNOR B, BALASUBRAMANYAN R, ROUTLEDGE B R, et al. From tweets to polls: linking text sentiment to public opinion time series[C]//Fourth International AAAI Conference on Weblogs and Social Media. Washington: AAAI, 2010: 122-129.
[6] CERON A, CURINI L, IACUS S M, et al. Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France[J]. New media & society, 2014, 16(2): 340–358.
[7] UNANKARD S, LI Xue, SHARAF M, et al. Predicting elections from social networks based on sub-event detection and sentiment analysis[M]//Web Information Systems Engineering-WISE 2014. Cham: Springer International Publishing, 2014: 1-16.
[8] JOO J, LI Weixin, STEEN F F, et al. Visual persuasion: inferring communicative intents of images[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 216-223.
[9] XUE Di, HONG Zheng, GUO Shize, et al. Personality recognition on social media with label distribution learning[J]. IEEE access, 2017, 5: 13478–13488.
[10] CHEN Danni, PARK K, JOO J. Understanding gender stereotypes and electoral success from visual self-presentations of politicians in social media[C]// Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends. New York: ACM, 2020: 21-25.
[11] 蔡庆平, 马海群. 基于Word2Vec和CNN的产品评论细粒度情感分析模型[J]. 图书情报工作, 2020, 64(6): 49–58
CAI Qingping, MA Haiqun. A fine-grained sentiment analysis model for product reviews based on Word2Vec and CNN[J]. Library and information service, 2020, 64(6): 49–58
[12] 张宜浩, 朱小飞, 徐传运, 等. 基于用户评论的深度情感分析和多视图协同融合的混合推荐方法[J]. 计算机学报, 2019, 42(6): 1316–1333
ZHANG Yihao, ZHU Xiaofei, XU Chuanyun, et al. Hybrid recommendation approach based on deep sentiment analysis of user reviews and multi-view collaborative fusion[J]. Chinese journal of computers, 2019, 42(6): 1316–1333
[13] VAN HEE C, LEFEVER E, HOSTE V. SemEval-2018 task 3: irony detection in English tweets[C]//Proceedings of The 12th International Workshop on Semantic Evaluation. New Orleans: ACM, 2018: 39-50.
[14] ZAMPIERI M, MALMASI S, NAKOV P, et al. Predicting the type and target of offensive posts in social media[C]//Proceedings of the 2019 Conference of the North. Minneapolis: ACL, 2019: 1415–1420.
[15] CHE Wanxiang, ZHAO Yanyan, GUO Honglei, et al. Sentence compression for aspect-based sentiment analysis[J]. IEEE-ACM transactions on audio speech and language processing, 2015, 23(12): 2111–2124.
[16] CORTIS K, FREITAS A, DAUDERT T, et al. Semeval-2017 task 5: fine-grained sentiment analysis on financial microblogs and news[C]//Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017). Vancouver: ACL, 2017: 519-535.
[17] BALAHUR A, STEINBERGER R, KABADJOV M, et al. Sentiment analysis in the news[EB/OL]. (2013-09-24)[ 2021-12-18].https://arxiv.org/abs/1309.6202.
[18] DEVLIN J, CHANG MING-WEI, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-10-11)[ 2021-12-18].https://arxiv.org/abs/1810.04805.
[19] MA Dehong, LI Sujian, ZHANG Xiaodong, et al. Interactive attention networks for aspect-level sentiment classification[EB/OL]. (2017-09-04)[ 2021-12-18].https://arxiv.org/abs/1709.00893.
[20] 翟学明, 魏巍. 混合神经网络和条件随机场相结合的文本情感分析[J]. 智能系统学报, 2021, 16(2): 202–209
ZHAI Xueming, WEI Wei. Text sentiment analysis combining hybrid neural network and conditional random field[J]. CAAI transactions on intelligent systems, 2021, 16(2): 202–209
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Conference and Workshop on Neural Information Processing Systems. Long Beach: MIT, 2017: 5998-6008.
[22] PARK K, PAN ZHUFENG, JOO J. Who blames or endorses whom? entity-to-entity directed sentiment extraction in news text[EB/OL]. (2021-06-02)[2021-12-18].https://arxiv.org/abs/2106.01033.
[23] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[EB/OL]. (2016-07-06)[2021-12-18].https://arxiv.org/abs/1607.01759.
[24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//NIPS’12: Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 1. New York: ACM, 2012: 1097-1105.
[25] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2014-09-08)[2021-12-18].https://arxiv.org/abs/1409.2329.
[26] LIANG Shuailong, NICOL O, ZHANG Yue. Who blames whom in a crisis? detecting blame ties from news articles using neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 655-662.
[27] LIU Yinhan, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. (2019-07-26)[2021-12-18].https://arxiv.org/abs/1907.11692.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems