[1]PU Xingcheng,TAN Ling.A mobile robot path planning method based on adaptive DWA and an improved bacteria algorithm[J].CAAI Transactions on Intelligent Systems,2023,18(2):314-324.[doi:10.11992/tis.202112014]
Copy

A mobile robot path planning method based on adaptive DWA and an improved bacteria algorithm

References:
[1] 杜永浩, 邢立宁, 蔡昭权. 无人飞行器集群智能调度技术综述[J]. 自动化学报, 2020, 46(2): 222–241
DU Yonghao, XING Lining, CAI Zhaoquan. Survey on intelligent scheduling technologies for unmanned flying craft clusters[J]. Acta automatica sinica, 2020, 46(2): 222–241
[2] 盛亮, 包磊, 吴鹏飞. 启发式方法在机器人路径规划优化中的应用综述[J]. 电光与控制, 2018, 25(9): 58–64
SHENG Liang, BAO Lei, WU Pengfei. Application of heuristic approaches in the robot path planning and optimization: a review[J]. Electronics optics & control, 2018, 25(9): 58–64
[3] LUO Qiang, WANG Haibao, ZHENG Yan, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural computing and applications, 2020, 32(6): 1555–1566.
[4] 孙功武, 苏义鑫, 顾轶超, 等. 基于改进蚁群算法的水面无人艇路径规划[J]. 控制与决策, 2021, 36(4): 847–856
SUN Gongwu, SU Yixin, GU Yichao, et al. Path planning for unmanned surface vehicle based on improved ant colony algorithm[J]. Control and decision, 2021, 36(4): 847–856
[5] GAO Wenxiang, TANG Qing, YE Beifa, et al. An enhanced heuristic ant colony optimization for mobile robot path planning[J]. Soft computing, 2020, 24(8): 6139–6150.
[6] MIAO Changwei, CHEN Guangzhu, YAN Chengliang, et al. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[J]. Computers & industrial engineering, 2021, 156: 107230.
[7] 曹新亮, 王智文, 冯晶, 等. 基于改进蚁群算法的机器人全局路径规划研究[J]. 计算机工程与科学, 2020, 42(3): 564–570
CAO Xinliang, WANG Zhiwen, FENG Jing, et al. Global path planning of robots based on improved ant colony algorithm[J]. Computer engineering & science, 2020, 42(3): 564–570
[8] LI Peng, ZHU Hua. Parameter selection for ant colony algorithm based on bacterial foraging algorithm[J]. Mathematical problems in engineering, 2016, 2016: 6469721.
[9] 蒲兴成, 李俊杰, 吴慧超, 等. 基于改进粒子群算法的移动机器人多目标点路径规划[J]. 智能系统学报, 2017, 12(3): 301–309
PU Xingcheng, LI Junjie, WU Huichao, et al. Mobile robot multi-goal path planning using improved particle swarm optimization[J]. CAAI transactions on intelligent systems, 2017, 12(3): 301–309
[10] ZHANG Yi, GUAN Guolun, PU Xingchen. The robot path planning based on improved artificial fish swarm algorithm[J]. Mathematical problems in engineering, 2016, 2016: 3297585.
[11] MUNI M K, PARHI D R, KUMAR P B. Improved motion planning of humanoid robots using bacterial foraging optimization[J]. Robotica, 2021, 39(1): 123–136.
[12] LIANG Xiaodan, LI Liangyu, WU Jigang, et al. Mobile robot path planning based on adaptive bacterial foraging algorithm[J]. Journal of Central South University, 2013, 20(12): 3391–3400.
[13] PANG Bao, SONG Yong, ZHANG Chengjin, et al. Bacterial foraging optimization based on improved chemotaxis process and novel swarming strategy[J]. Applied intelligence, 2019, 49(4): 1283–1305.
[14] LIAN Jianfang, YU Wentao, XIAO Kui, et al. Cubic spline interpolation-based robot path planning using a chaotic adaptive particle swarm optimization algorithm[J]. Mathematical problems in engineering, 2020, 2020: 1849240.
[15] 李元, 王石荣, 于宁波. 基于RGB-D信息的移动机器人SLAM和路径规划方法研究与实现[J]. 智能系统学报, 2018, 13(3): 445–451
LI Yuan, WANG Shirong, YU Ningbo. RGB-D-based SLAM and path planning for mobile robots[J]. CAAI transactions on intelligent systems, 2018, 13(3): 445–451
[16] CHANG Lu, SHAN Liang, JIANG Chao, et al. Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment[J]. Autonomous robots, 2021, 45(1): 51–76.
[17] HENKEL C, BUBECK A, XU Weiliang. Energy efficient dynamic window approach for local path planning in mobile service robotics[J]. IFAC-papersonline, 2016, 49(15): 32–37.
[18] JIN Qibing, TANG Chuning, CAI Wu. Research on dynamic path planning based on the fusion algorithm of improved ant colony optimization and rolling window method[J]. IEEE access, 2021, 10: 28322–28332.
[19] CHEN Zheng, ZHANG Youming, ZHANG Yougong, et al. A hybrid path planning algorithm for unmanned surface vehicles in complex environment with dynamic obstacles[J]. IEEE access, 2019, 7: 126439–126449.
[20] 黄辰. 基于智能优化算法的移动机器人路径规划与定位方法研究[D]. 大连: 大连交通大学, 2018: 1?123.
HUANG Chen. Study on path planning and location of mobile robot based on intelligent optimization algorithm[D]. Dalian: Dalian Jiaotong University, 2018: 1?123.
[21] 蒲兴成, 赵红全, 张毅. 细菌趋化行为的移动机器人路径规划[J]. 智能系统学报, 2014, 9(1): 69–75
PU Xingcheng, ZHAO Hongquan, ZHANG Yi. Mobile robot path planning research based on bacterial chemotaxis[J]. CAAI transactions on intelligent systems, 2014, 9(1): 69–75
[22] 封硕, 吉现友, 程博, 等. 融合动态障碍物运动信息的路径规划算法[J]. 计算机工程与应用, 2021, 1(1): 1–8
FENG shuo, JI xianyou, CHENG bo, et al. Path planning algorithm based on dynamic obstacle movement information[J]. Computer engineering and application., 2021, 1(1): 1–8
[23] AJEIL F H, IBRAHEEM I K, AZAR A T, et al. Grid-based mobile robot path planning using aging-based ant colony optimization algorithm in static and dynamic environments[J]. Sensors (Basel, Switzerland), 2020, 20(7): 1880.
[24] WANG Lanfei, KAN Jiangming, GUO Jun, et al. 3D path planning for the ground robot with improved ant colony optimization[J]. Sensors (Basel, Switzerland), 2019, 19(4): 815.
[25] TULLU A, ENDALE B, WONDOSEN A, et al. Machine learning approach to real-time 3D path planning for autonomous navigation of unmanned aerial vehicle[J]. Applied sciences, 2021, 11(10): 4706.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems