[1]ZHOU Xianchen,MA Yang,CHENG Guangquan,et al.Robust graph neural network method for target entity type recognition in a battlefield environment[J].CAAI Transactions on Intelligent Systems,2023,18(6):1156-1164.[doi:10.11992/tis.202111025]
Copy

Robust graph neural network method for target entity type recognition in a battlefield environment

References:
[1] 李明军, 刘怡昕, 黄先义, 等. 基于模糊模式识别的战场目标识别[J]. 火力与指挥控制, 2005, 30(8): 57–60
LI Mingjun, LIU Yixin, HUANG Xianyi, et al. Research on battlefeld targets identification based on fuzzy pattern identification[J]. Fire control and command control, 2005, 30(8): 57–60
[2] 强勇, 缑水平, 王永刚. 战场感知系统目标识别技术的进展[J]. 火控雷达技术, 2008, 37(1): 1–9
QIANG Yong, GOU Shuiping, WANG Yonggang. Development and prospect of target recognition in battlefield perception system[J]. Fire control radar technology, 2008, 37(1): 1–9
[3] 王昌安, 田金文. 生成对抗网络辅助学习的舰船目标精细识别[J]. 智能系统学报, 2020, 15(2): 296–301
WANG Chang’an, TIAN Jinwen. Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J]. CAAI transactions on intelligent systems, 2020, 15(2): 296–301
[4] 马林. 雷达目标识别技术综述[J]. 现代雷达, 2011, 33(6): 1–7
MA Lin. Review of radar automatic target recognition[J]. Modern radar, 2011, 33(6): 1–7
[5] 路征, 龚燕. 雷达辐射源识别技术面临的主要挑战及对策[J]. 国防科技, 2017, 38(2): 24–27
LU Zheng, GONG Yan. Thoughts on the major challenge of radar emitter recognition technology and countermeasures[J]. National defense science & technology, 2017, 38(2): 24–27
[6] 倪迎红, 陈玲. 雷达目标识别及发展趋势预测[J]. 电讯技术, 2009, 49(11): 98–102
NI Yinghong, CHEN Ling. Radar target recognition and development trend prediction[J]. Telecommunication engineering, 2009, 49(11): 98–102
[7] 姬晓飞, 秦宁丽, 刘洋. 多特征的光学遥感图像多目标识别算法[J]. 智能系统学报, 2016, 11(5): 655–662
JI Xiaofei, QIN Ningli, LIU Yang. Research on multi-feature based multi-target recognition algorithm for optical remote sensing image[J]. CAAI transactions on intelligent systems, 2016, 11(5): 655–662
[8] 李士国, 张瑞国, 孙晶明, 等. 基于深度学习的雷达自动目标识别架构研究[J]. 现代雷达, 2019, 41(11): 57–61, 84
LI Shiguo, ZHANG Ruiguo, SUN Jingming, et al. A study on the architecture of radar ATR based on deep learning[J]. Modern radar, 2019, 41(11): 57–61, 84
[9] FAN Wenqi, MA Yao, LI Qing, et al. Graph neural networks for social recommendation[C]//WWW ’19: The World Wide Web Conference. New York: ACM, 2019: 417-426.
[10] ZHOU Fan, YANG Qing, ZHONG Ting, et al. Variational graph neural networks for road traffic prediction in intelligent transportation systems[J]. IEEE transactions on industrial informatics, 2021, 17(4): 2802–2812.
[11] DUVENAUD D, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[J]. Advances in neural information processing systems, 2015: 2224–2232.
[12] WANG Juexin, MA Anjun, CHANG Yuzhou, et al. SCGNN is a novel graph neural network framework for single-cell RNA-Seq analyses[J]. Nature communications, 2021, 12(1): 1882.
[13] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09) [2021-11-15]. https://arxiv.org/abs/1609.02907.
[14] KENLAY H, THANO D, DONG Xiaowen. On the stability of graph convolutional neural networks under edge rewiring[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 8513-8517.
[15] VELIKOVI P , CUCURULL G , CASANOVA A, et al. Graph Attention Networks[C]//International Conference on Learning Representations. Vancouver: OpenReview, 2018.
[16] BERNDT D J,CLIFFORD J. Using dynamic time warping to find patterns in time series[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Seattle: AAAI Press, 1994: 359–370.
[17] SALVADOR S, CHAN P. Toward accurate dynamic time warping in linear time and space[J]. Intelligent data analysis, 2007, 11(5): 561–580.
[18] ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: a review of methods and applications[J]. AI open, 2020, 1: 57–81.
[19] XU Keyulu, HU Weihua, LESKOVEC J, et al. How Powerful are Graph Neural Networks[EB/OL]. (2018-10-01)[2021-11-15]. https://arxiv.org/abs/1810.00826.
[20] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 1025-1035.
[21] ZüGNER D, GüNNEMANN S. Adversarial attacks on graph neural networks via meta learning[EB/OL]. (2019-02-22)[2021-11-15]. https://arxiv.org/abs/1902.08412.
[22] ZüGNER D, AKBARNEJAD A, GüNNEMANN S. Adversarial attacks on neural networks for graph data[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 2847-2856.
[23] JIN Wei, MA Yao, LIU Xiaorui, et al. Graph structure learning for robust graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 66-74.
[24] ENTEZARI N, AL-SAYOURI S A, DARVISHZADEH A, et al. All You need is low (rank): defending against adversarial attacks on graphs[C]//Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 169-177.
[25] PAL S K, MITRA S. Multilayer perceptron, fuzzy sets, and classification[J]. IEEE transactions on neural networks, 1992, 3(5): 683–697.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems