[1]HAN Lu,BI Xiaojun.Retinal optical coherence tomography image classification based on multiscale feature fusion[J].CAAI Transactions on Intelligent Systems,2022,17(2):360-367.[doi:10.11992/tis.202111024]
Copy

Retinal optical coherence tomography image classification based on multiscale feature fusion

References:
[1] ROMERO-AROCA P. Current status in diabetic macular edema treatments[J]. World journal of diabetes, 2013, 4(5): 165–169.
[2] 刘艳, 隋虹, 罗志忠, 等. 糖尿病性视网膜病变与糖尿病控制状态研究[J]. 中国糖尿病杂志, 2002, 10(1): 37–39,36
LIU Yan, SUI Hong, LUO Zhizhong, et al. A study on the relationship between diabetic retinopathy and the state of diabetes mellitus control[J]. Chinese journal of diabetes, 2002, 10(1): 37–39,36
[3] OTANI T, KISHI S, MARUYAMA Y. Patterns of diabetic macular edema with optical coherence tomography[J]. American journal of ophthalmology, 1999, 127(6): 688–693.
[4] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178–1181.
[5] DREXLER W, FUJIMOTO J G. State-of-the-art retinal optical coherence tomography[J]. Progress in retinal and eye research, 2008, 27(1): 45–88.
[6] PIZURICA A, JOVANOV L, HUYSMANS B, et al. Multiresolution denoising for optical coherence tomography: a review and evaluation[J]. Current medical imaging reviews, 2008, 4(4): 270–284.
[7] BEAUREPAIRE E, BOCCARA A C, LEBEC M, et al. Full-field optical coherence microscopy[J]. Optics letters, 1998, 23(4): 244.
[8] GOH J K H, CHEUNG C Y, SIM S S, et al. Retinal imaging techniques for diabetic retinopathy screening[J]. Journal of diabetes science and technology, 2016, 10(2): 282–294.
[9] 袁非. 糖尿病性视网膜病变及其早期检测[J]. 国外医学 眼科学分册, 1997(4): 219–224
[10] ADHI M, DUKER J S. Optical coherence tomography: current and future applications[J]. Current opinion in ophthalmology, 2013, 24(3): 213–221.
[11] DOI K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential[J]. Computerized medical imaging and graphics, 2007, 31(4/5): 198–211.
[12] ASIRI N, HUSSAIN M, AL ADEL F, et al. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey[J]. Artificial intelligence in medicine, 2019, 99: 101701.
[13] KOPROWSKI R, TEPER S, WRóBEL Z, et al. Automatic analysis of selected choroidal diseases in OCT images of the eye fundus[J]. Biomedical engineering online, 2013, 12: 117.
[14] KARRI S P K, CHAKRABORTY D, CHATTERJEE J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration[J]. Biomedical optics express, 2017, 8(2): 579–592.
[15] HASSAN B, RAJA G, HASSAN T, et al. Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images[J]. Journal of the Optical Society of America A, Optics, image science, and vision, 2016, 33(4): 455–463.
[16] CIULLA T A, AMADOR A G, ZINMAN B. Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies[J]. Diabetes care, 2003, 26(9): 2653–2664.
[17] 张添福, 钟舜聪, 连超铭, 等. 基于深度学习特征融合的视网膜图像分类[J]. 激光与光电子学进展, 2020(24): 258–265
ZHANG Tianfu, ZHONG Shuncong, LIAN Chaoming, et al. Deep learning feature fusion-based retina image classification[J]. Laser & optoelectronics progress, 2020(24): 258–265
[18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2021-01-01].https://arxiv.org/abs/1409.1556.
[19] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA. IEEE, 2018: 7132?7141.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3?19.
[21] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA. IEEE, 2020: 11531?11539.
[22] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4): 834–848.
[23] 朱纳, 李明. 多层次可选择核卷积用于视网膜图像分类[EB/OL]. (2021-10-11)[2021-12-01].https://kns-cnki-net.wvpn.hrbeu.edu.cn/kcms/detail/50.1181.N.20211009.1903.006.html.
ZHU Na, LI Ming. Multi-level selective kernel convolution for retinal image classification[EB/OL]. (2021-10-11)[2021-12-01].https://kns-cnki-net.wvpn.hrbeu.edu.cn/kcms/detail/50.1181.N.20211009.1903.006.html..
[24] BHADRA R, KAR S. Retinal disease classification from optical coherence tomographical scans using multilayered convolution neural network[C]//2020 IEEE Applied Signal Processing Conference . Kolkata, India. IEEE, 2020: 212-216.
[25] 于海琛. 基于SE-Block的视网膜疾病分类方法研究[D]. 长春: 吉林大学, 2019.
YU Haichen. Research on classification of retinal diseases based on SE-block[D]. Changchun: Jilin University, 2019.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems