[1]ZHAI Yongjie,ZHANG Zhibai,WANG Yaru.An image recognition method of zero -shot learning based on an improved TransGAN[J].CAAI Transactions on Intelligent Systems,2023,18(2):352-359.[doi:10.11992/tis.202111002]
Copy

An image recognition method of zero -shot learning based on an improved TransGAN

References:
[1] LAROCHELLE H, ERHAN D, BENGIO Y. Zero-data learning of new tasks[C]//AAAI’08: Proceedings of the 23rd national conference on Artificial intelligence - Volume 2. New York: ACM, 2008: 646?651.
[2] PALATUCCI M, POMERLEAU D, HINTON G, et al. Zero-shot learning with semantic output codes[C]//NIPS’09: Proceedings of the 22nd International Conference on Neural Information Processing Systems. New York: ACM, 2009: 1410?1418.
[3] XU Xing, SHEN Fumin, YANG Yang, et al. Matrix tri-factorization with manifold regularizations for zero-shot learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2007?2016.
[4] LIU Mingxia, ZHANG Daoqiang, CHEN Songcan. Attribute relation learning for zero-shot classification[J]. Neurocomputing, 2014, 139: 34–46.
[5] 翟永杰, 吴童桐. 基于语义空间信息映射加强的零样本学习方法[J]. 计算机应用与软件, 2020, 37(12): 113–118,196
ZHAI Yongjie, WU Tongtong. Zero shot learning based on semantic spatial information mapping enhancement[J]. Computer applications and software, 2020, 37(12): 113–118,196
[6] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 951?958.
[7] ROMERA-PAREDES B, TORR P H S. An Embarrassingly Simple Approach to Zero-Shot Learning[M]// Visual Attributes. Cham: Springer, 2017: 11?30.
[8] QIAO Ruizhi, LIU Lingqiao, SHEN Chunhua, et al. Less is more: zero-shot learning from online textual documents with noise suppression[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2249?2257.
[9] FU Yanwei, HOSPEDALES T M, XIANG Tao, et al. Transductive multi-view zero-shot learning[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(11): 2332–2345.
[10] SHIGETO Y, SUZUKI I, HARA K, et al. Ridge regression, hubness, and zero-shot learning[M]//Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2015: 135?151.
[11] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014: 27.
[12] ZHU Y, ELHOSEINY M, LIU B, et al. A generative adversarial approach for zero-shot learning from noisy texts[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 1004?1013.
[13] CHEN Z, LI J, LUO Y, et al. Canzsl: Cycle-consistent adversarial networks for zero-shot learning from natural language[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Salt Lake City: IEEE, 2020: 874?883.
[14] JIANG YIFAN, CHANG SHIYU, WANG ZHANGYANG. TransGAN: two pure transformers can make one strong GAN, and that can scale up[EB/OL].(2021?02?04)[2021?10?31].https://arxiv.org/abs/2102.07074.
[15] 王正龙, 张保稳. 生成对抗网络研究综述[J]. 网络与信息安全学报, 2021, 7(4): 68–85
WANG Zhenglong, ZHANG Baowen. Survey of generative adversarial network[J]. Chinese journal of network and information security, 2021, 7(4): 68–85
[16] ADLER J, LUNZ S. Banach Wasserstein Gan[EB/OL].(2018?06?18)[2021?10?31].https://arxiv.org/abs/1806.06621.
[17] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL].(2020?10?22)[2021?10?31].https://arxiv.org/abs/2010.11929.
[18] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770?778.
[19] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[EB/OL].(2017?12?25)[2020?02?02].https://arxiv.org/abs/1704.00028.
[20] XIAN Yongqin, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5542?5551.
[21] NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C]//2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing. Bhubaneswar: IEEE, 2008: 722?729.
[22] WAH C, BRANSON S, WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset[R]. California Institute of Technology, 2011.
[23] 刘靖祎, 史彩娟, 涂冬景, 等. 零样本图像分类综述[J]. 计算机科学与探索, 2021, 15(5): 812–824
LIU Jingyi, SHI Caijuan, TU Dongjing, et al. Survey of zero-shot image classification[J]. Journal of frontiers of computer science and technology, 2021, 15(5): 812–824
[24] ELHOSEINY M, SALEH B, ELGAMMAL A. Write a classifier: Zero-shot learning using purely textual descriptions[C]// Proceedings of the IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 2584?2591.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems