[1]GAO Tao,YANG Zhaochen,CHEN Ting,et al.Deep multiscale fusion attention residual network for facial expression recognition[J].CAAI Transactions on Intelligent Systems,2022,17(2):393-401.[doi:10.11992/tis.202107028]
Copy

Deep multiscale fusion attention residual network for facial expression recognition

References:
[1] BEN Xianye, REN Yi, ZHANG Junping, et al. Video-based Facial micro-expression analysis: a survey of datasets, features and algorithms[EB/OL].(2021-03-19)[2021-05-01].https://arxiv.org/abs/2201.12728v1.
[2] CHEN Boyu, GUAN Wenlong, LI Peixia, et al. Residual multi-task learning for facial landmark localization and expression recognition[EB/OL].(2021-07-01)[2021-07-05].https://www.sciencedirect.com/science/article/pii/S0031320321000807.
[3] LI Shan, DENG Weihong. Deep facial expression recognition: a survey[EB/OL].(2020-03-17)[2021-05-01]. https://ieeexplore.ieee.org/document/9039580.
[4] ZHAO Guoying, PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 915–928.
[5] WHITEHILL J, OMLIN C W. Haar features for FACS AU recognition[C]//Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Southampton, UK, 2006: 5?101.
[6] BARTLETT M S, LITTLEWORT G, FRANK M, et al. Recognizing facial expression: machine learning and application to spontaneous behavior[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 568?573.
[7] LI Xiaobai, PFISTER T, HUANG Xiaohua, et al. A spontaneous micro-expression database: inducement, collection and baseline[C]//2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Shanghai, China, 2013: 1?6.
[8] RIVERA A R, CASTILLO J R, CHA E O O. Local directional number pattern for face analysis: face and expression recognition[J]. IEEE transactions on image processing, 2013, 22(5): 1740–1752.
[9] KIM T H, YU C, LEE S W. Facial expression recognition using feature additive pooling and progressive fine-tuning of CNN[J]. Electronics letters, 2018, 54(23): 1326–1328.
[10] AN Fengping, LIU Zhiwen. Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM[J]. The visual computer, 2020, 36(3): 483–498.
[11] XIE Siyue, HU Haifeng, WU Yongbo. Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition[J]. Pattern recognition, 2019, 92: 177–191.
[12] WANG Kai, PENG Xiaojiang, YANG Jianfei, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA, 2020: 6897?6906.
[13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770?778.
[14] LI Yong, ZENG Jiabei, SHAN Shiguang, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE transactions on image processing, 2019, 28(5): 2439–2450.
[15] LIU Yuanyuan, YUAN Xiaohui, GONG Xi, et al. Conditional convolution neural network enhanced random forest for facial expression recognition[J]. Pattern recognition, 2018, 84: 251–261.
[16] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7132?7141.
[17] 江静, 邓伟洪. 持续学习改进的人脸表情识别[J]. 中国图象图形学报, 2020, 25(11): 2361–2369
JIANG Jing, DENG Weihong. Facial expression recognition improved by continual learning[J]. Journal of image and graphics, 2020, 25(11): 2361–2369
[18] 王善敏, 帅惠, 刘青山. 关键点深度特征驱动人脸表情识别[J]. 中国图象图形学报, 2020, 25(4): 813–823
WANG Shanmin, SHUAI Hui, LIU Qingshan. Facial expression recognition based on deep facial landmark features[J]. Journal of image and graphics, 2020, 25(4): 813–823
[19] 张文萍, 贾凯, 王宏玉, 等. 改进的Island损失函数在人脸表情识别上的应用[J]. 计算机辅助设计与图形学学报, 2020, 32(12): 1910–1917
ZHANG Wenping, JIA Kai, WANG Hongyu, et al. Application of improved Island loss in facial expression recognition[J]. Journal of computer-aided design & computer graphics, 2020, 32(12): 1910–1917
[20] LIU Xiaofeng, KUMAR B V K V, JIA Ping, et al. Hard negative generation for identity-disentangled facial expression recognition[J]. Pattern recognition, 2019, 88: 1–12.
[21] YANG Huiyuan, CIFTCI U, YIN Lijun. Facial expression recognition by de-expression residue learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018.
[22] XIE Siyue, HU Haifeng. Facial expression recognition using hierarchical features with deep comprehensive multipatches aggregation convolutional neural networks[J]. IEEE transactions on multimedia, 2019, 21(1): 211–220.
[23] LOPES A T, DE AGUIAR E, DE SOUZA A F, et al. Facial expression recognition with convolutional neural networks: coping with few data and the training sample order[J]. Pattern recognition, 2017, 61: 610–628.
[24] ZHANG Hepeng, HUANG Bin, TIAN Guohui. Facial expression recognition based on deep convolution long short-term memory networks of double-channel weighted mixture[J]. Pattern recognition letters, 2020, 131: 128–134.
[25] YANG Biao, CAO Jinmeng, NI Rongrong, et al. Facial expression recognition using weighted mixture deep neural network based on double-channel facial images[J]. IEEE access, 2017, 6: 4630–4640.
[26] KIM J H, KIM B G, ROY P P, et al. Efficient facial expression recognition algorithm based on hierarchical deep neural network structure[J]. IEEE access, 2019, 7: 41273–41285.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems