[1]YANG Hui,ZHANG Ting,JIN Sheng,et al.Visual loop closure detection based on binary generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16(4):673-682.[doi:10.11992/tis.202007007]
Copy

Visual loop closure detection based on binary generative adversarial network

References:
[1] KONOLIGE K, AGRAWAL M. FrameSLAM: from bundle adjustment to real-time visual mapping[J]. IEEE transactions on robotics, 2008, 24(5): 1066-1077.
[2] 张毅, 沙建松. 基于图优化的移动机器人视觉SLAM[J]. 智能系统学报, 2018, 13(2): 290-295
ZHANG Yi, SHA Jiansong. Visual-SLAM for mobile robot based on graph optimization[J]. CAAI transactions on intelligent systems, 2018, 13(2): 290-295
[3] HO K L, NEWMAN P. Detecting loop closure with scene sequences[J]. International journal of computer vision, 2007, 74(3): 261-286.
[4] 刘强, 段富海, 桑勇, 等. 复杂环境下视觉SLAM闭环检测方法综述[J]. 机器人, 2019, 41(1): 112-123, 136
LIU Qiang, DUAN Fuhai, SANG Yong, et al. A survey of loop-closure detection method of visual SLAM in complex environments[J]. Robot, 2019, 41(1): 112-123, 136
[5] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 17th IEEE International Conference on Computer Vision. Kerkyra, Greece, 2002: 1150-1157.
[6] BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Computer vision-ECCV 2006. Graz, Austria, 2006: 404-417.
[7] SIVIC J, ZISSERMAN A. Video Google: A text retrieval approach to object matching in videos[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003: 1470-1477.
[8] CHEN Zetao, LAM O, JACOBSON A, et al. Convolutional neural network-based place recognition[C]//Australasian Conference on Robotics and Automati-on. Melbourne, Australasian, 2014: 8-14.
[9] SüNDERHAUF N, SHIRAZI S, DAYOUB F, et al. On the performance of ConvNet features for place recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 4297-4304.
[10] GAO Xiang, ZHANG Tao. Unsupervised learning to detect loops using deep neural networks for visual SLAM system[J]. Autonomous robots, 2017, 41(1): 1-18.
[11] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 2672-2680.
[12] HINTON G E, ZEME R S. Autoencoders, minimum description length and Helmholtz free energy[C]//Proceedings of the 6th International Conference on Neural Information Processing Systems. Denver, Colorado, USA, 1993: 3-10.
[13] SMOLENSKY P. Information processing in dynamical systems: foundations of harmony theory[M]//RUMELHART D E, MCCLELLAND J L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge: MIT Press, 1986.
[14] SHIN D W, HO Y S, KIM E S. Loop closure detection in simultaneous localization and mapping using descriptor from generative adversarial network[J]. Journal of electronic imaging, 2019, 28(1): 013014.
[15] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico, 2016: 97-108.
[16] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 2016: 2234-2242.
[17] DONG Haowen, YANG Y H. Training generative adversarial networks with binary neurons by end-to-end backpropagation[EB/OL]. (2018-12-12) [2020-01-01] https://arxiv.org/abs/1810.04714.
[18] CAO Yanshuai, DING G W, LUI K Y C, et al. Improving GAN training via binarized representation entropy (BRE) regularization[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018: 1-22.
[19] ZHOU Bolei, LAPEDRIZA A, KHOSLA A, et al. Places: A 10 million image database for scene recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(6): 1452-1464.
[20] CUMMINS M, NEWMAN P. FAB-MAP: Probabilistic localization and mapping in the space of appearance[J]. The international journal of robotics research, 2008, 27(6): 647-665.
[21] CHOI Y, KIM N, PARK K, et al. All-day visual place recognition: benchmark dataset and baseline[C]//Proceedings of 2015 IEEE International Conference on Computer Vision and Pattern Recognition Workshops. Boston, USA, 2015: 8-13.
[22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012: 1097-1105.
[23] CHEN Zetao, JACOBSON A, SüNDERHAUF N, et al. Deep learning features at scale for visual place recognition[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore, 2017: 3223-3230.
[24] ZAFFAR M, KHALIQ A, EHSAN S, et al. Levelling the playing field: A comprehensive comparison of visual place recognition approaches under changing conditions[EB/OL]. (2019-04-29) [2020-02-01] https://arxiv.org/abs/1903.09107?context=cs.CV.
[25] MEMON A R, WANG Hesheng, HUSSAIN A. Loop closure detection using supervised and unsupervised deep neural networks for monocular SLAM systems[J]. Robotics and autonomous systems, 2020, 126: 103470.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems