[1]DENG Tingquan,WANG Qiang.Semi-supervised class preserving locally linear embedding[J].CAAI Transactions on Intelligent Systems,2021,16(1):98-107.[doi:10.11992/tis.202003007]
Copy

Semi-supervised class preserving locally linear embedding

References:
[1] LIU Feng, ZHANG Weijie, GU Suicheng. Local linear laplacian eigenmaps:a direct extension of LLE[J]. Pattern recognition letters, 2016, 75:30-35.
[2] JIANG Bo, DING C, LUO Bin. Robust data representation using locally linear embedding guided PCA[J]. Neurocomputing, 2018, 275:523-532.
[3] WANG Qian, WANG Weiguo, NIAN Rui, et al. Manifold learning in local tangent space via extreme learning machine[J]. Neurocomputing, 2016, 174:18-30.
[4] TANG Z, LAO H. Robust image hashing via DCT and LLE[J]. Computers and security, 2016, 62:133-148.
[5] ZHANG Yan, ZHANG Zhao, QIN Jie, et al. Semi-supervised local multi-manifold Isomap by linear embedding for feature extraction[J]. Pattern recognition, 2018, 76:622-678.
[6] LIU Zhonghua, WANG Xiaohong, PU Jiexin, et a. Nonnegative low-rank representation based manifold embedding for semi-supervised learning[J]. Knowledge-based systems, 2017, 136:121-129.
[7] CHEN Lin, YANG Meng. Semi-supervised dictionary learning with label propagation for image classification[J]. Computational visual media, 2017, 3(1):83-94.
[8] MIKALSEN K O, SOGUERO-RUIZ C, BIANCHI F M, et al. Noisy multi-label semi-supervised dimensionality reduction[J]. Pattern recognition, 2019, 90:257-270.
[9] PARK S H, KIM S B. Active semi-supervised learning with multiple complementary information[J]. Expert systems with applications, 2019, 126:30-40.
[10] ZHENG Feng, SONG Zhan, SHAO Ling, et al. A semi-supervised approach for dimensionality reduction with distributional similarity[J]. Neurocomputing, 2013, 103:210-221.
[11] SUN Shiliang, HUSSAIN Z, SHAWE-TAYLOR J. Manifold-preserving graph reduction for sparse semi-supervised learning[J]. Neurocomputing, 2014, 124:13-21.
[12] KIM K. An improved semi-supervised dimensionality reduction using feature weighting:application to sentiment analysis[J]. Expert systems with applications, 2018, 109:49-65.
[13] ROWEIS S T, SAUL L J. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326.
[14] LANGLEY P, PAZZANI M J, FISHER D H. Concept formation:knowledge and experience in unsupervised learning[M]. San Mateo:Morgan Kaufmann Publishers, 1991.
[15] YANG Bo, XIANG Ming, ZHANG Yupei. Multi-manifold discriminant isomap for visualization and classification[J]. Pattern recognition, 2016:215-230.
[16] 张长帅, 周大可, 杨欣. 一种基于核的半监督局部线性嵌入方法[J]. 计算机工程, 2011, 37(20):157-159
ZHANG Changshuai, ZHOU Dake, YANG Xin. Method of kernel-based semi-supervised local linear embedding[J]. Computer engineering, 2011, 37(20):157-159
[17] KIM K, LEE J. Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction[J]. Pattern recognition, 2014, 47(2):758-768.
[18] COSTA J A, HERO III A O. Classification constrained dimensionality reduction[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, USA, 2005:1077-1080.
[19] MARCILLA A, REYES-LABARTA J A, OLAYA M M. Should we trust all the published LLE correlation parameters in phase equilibria? Necessity of their assessment prior to publication[J]. Fluid phase equilibria, 2017, 433:243-252.
[20] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum, 1981:35-36.
Similar References:

Memo

-

Last Update: 2021-02-25

Copyright © CAAI Transactions on Intelligent Systems