[1]WU Yingying,DING Zhaohong,LIU Huaping,et al.Self-organizing target search algorithm of multi-agent system for envi-ronment detection[J].CAAI Transactions on Intelligent Systems,2020,15(2):289-295.[doi:10.11992/tis.201908023]
Copy

Self-organizing target search algorithm of multi-agent system for envi-ronment detection

References:
[1] BENKOSKI S J, MONTICINO M G, WEISINGER J R. A survey of the search theory literature[J]. Naval research lo-gistics, 1991, 38(4): 469-494.
[2] 吴军, 徐昕, 连传强, 等. 协作多机器人系统研究进展综述[J]. 智能系统学报, 2011, 6(1): 13-27
WU Jun, XU Xin, LIAN Chuanqiang, et al. A survey of recent advances in cooperative multi-robot systems[J]. CAAI transactions on intelligent systems, 2011, 6(1): 13-27
[3] 袁波. 面向卫星资源规划的海面运动目标分析方法研究[D]. 长沙: 国防科学技术大学, 2010: 4-5.
YUAN Bo. Research on analysis of maritime moving target for satellite resource scheduling[D]. Changsha: National University of Defense Technology, 2010: 4-5.
[4] FORSTER C, PIZZOLI M, SCARAMUZZA D. Appear-ance-based active, monocular, dense reconstruction for micro aerial vehicle[C]//Proceedings of 2014 Robotics: Science and Systems Conference. Berkeley, USA, 2014.
[5] XIA Fei, ZAMIR A R, HE Zhiyang, et al. Gibson Env: real-world perception for embodied agents[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 9068-9079.
[6] RAMIREZ-PAREDES J P, DOUCETTE E A, CURTIS J W, et al. Distributed information-based guidance of multiple mobile sensors for urban target search[J]. Autonomous ro-bots, 2018, 42(2): 375-389.
[7] BEST G, CLIFF O M, PATTEN T, et al. Dec-MCTS: de-centralized planning for multi-robot active perception[J]. The international journal of robotics research, 2019, 38(2/3): 316-337.
[8] FAIGL J. GSOA: growing self-organizing Ar-ray-unsupervised learning for the close-enough traveling salesman problem and other routing problems[J]. Neuro-computing, 2018, 312: 120-134.
[9] BEST G, FAIGL J, FITCH R. Online planning for mul-ti-robot active perception with self-organising maps[J]. Autonomous robots, 2018, 42(4): 715-738.
[10] PRICE E, LAWLESS G, LUDWIG R, et al. Deep neural network-based cooperative visual tracking through multiple micro aerial vehicles[J]. IEEE robotics and automation letters, 2018, 3(4): 3193-3200.
[11] TALLAMRAJU R, RAJAPPA S, BLACK M J, et al. De-centralized MPC based obstacle avoidance for multi-robot target tracking scenarios[C]//Proceedings of 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics. Philadelphia, USA, 2018.
[12] AHMAD A, LAWLESS G, LIMA P. An online scalable approach to unified Multirobot cooperative localization and object tracking[J]. IEEE transactions on robotics, 2017, 33(5): 1184-1199.
[13] CHEN Yufan, LIU Miao, EVERETT M, et al. Decentralized non-communicating Multiagent collision avoidance with deep reinforcement learning[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore, 2017.
[14] LONG Pinxin, LIU Wenxi, PAN Jia. Deep-learned colli-sion avoidance policy for distributed multiagent navigation[J]. IEEE robotics and automation letters, 2017, 2(2): 656-663.
[15] 熊雄, 杨日杰, 沈阳. 基于等效平均探测宽度的航空磁探潜搜索概率评估模型[J]. 系统工程与电子技术, 2014, 36(3): 487-493
XIONG Xiong, YANG Rijie, SHEN Yang. Search proba-bility evaluation model of airborne magnetic anomaly detection based on equivalent average sweep width[J]. Systems engineering and electronics, 2014, 36(3): 487-493
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems