[1]SHI Songhui,DING Shifei.Energy-based structural least square twin support vector machine[J].CAAI Transactions on Intelligent Systems,2020,15(5):1013-1019.[doi:10.11992/tis.201906030]
Copy

Energy-based structural least square twin support vector machine

References:
[1] CORTES C, VAPNIK V N. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[2] JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(5): 905-910.
[3] SHAO Yuanhai, ZHANG Chunhua, WANG Xiaobo, et al. Improvements on twin support vector machines[J]. IEEE transactions on neural networks, 2011, 22(6): 962-968.
[4] KUMAR M A, GOPAL M. Least squares twin support vector machines for pattern classification[J]. Expert systems with applications, 2009, 36(4): 7535-7543.
[5] TIAN Yingjie, QI Zhiquan, JU Xuchan, et al. Nonparallel support vector machines for pattern classification[J]. IEEE transactions on cybernetics, 2014, 44(7): 1067-1079.
[6] NASIRI J A, CHARKARI N M, MOZAFARI K. Energy-based model of least squares twin support vector machines for human action recognition[J]. Signal processing, 2014, 104: 248-257.
[7] 马跃峰, 梁循, 周小平. 一种基于全局代表点的快速最小二乘支持向量机稀疏化算法[J]. 自动化学报, 2017, 43(1): 132-141
MA Yuefeng, LIANG Xun, ZHOU Xiaoping. A fast sparse algorithm for least squares support vector machine based on global representative points[J]. Acta automatica sinica, 2017, 43(1): 132-141
[8] 吴青, 齐韶维, 孙凯悦, 等. 最小二乘大间隔孪生支持向量机[J]. 北京邮电大学学报, 2018, 41(6): 34-38
WU Qing, QI Shaowei, SUN Kaiyue, et al. Least squares large margin twin support vector machine[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(6): 34-38
[9] RIGOLLET P. Generalization error bounds in semi-supervised classification under the cluster assumption[J]. The journal of machine learning research, 2007, 8: 1369-1392.
[10] YEUNG D S, WANG Defeng, NG W W Y, et al. Structured large margin machines: sensitive to data distributions[J]. Machine learning, 2007, 68(2): 171-200.
[11] LANCKRIET G R G, EL GHAOUI L, BHATTACHARYYA C, et al. A robust minimax approach to classification[J]. The journal of machine learning research, 2002, 3: 555-582.
[12] HUANG Kaizhu, YANG Haiqin, KING I, et al. Maxi-min margin machine: learning large margin classifiers locally and globally[J]. IEEE transactions on neural networks, 2008, 19(2): 260-272.
[13] XUE Hui, CHEN Songcan, YANG Qiang. Structural regularized support vector machine: a framework for structural large margin classifier[J]. IEEE transactions on neural networks, 2011, 22(4): 573-587.
[14] QI Zhiquan, TIAN Yingjie, SHI Yong. Structural twin support vector machine for classification[J]. Knowledge-based systems, 2013, 43: 74-81.
[15] 丁世飞, 张健, 张谢锴, 等. 多分类孪生支持向量机研究进展[J]. 软件学报, 2018, 29(1): 89-108
DING Shifei, ZHANG Jian, ZHANG Xiekai, et al. Survey on multi class twin support vector machines[J]. Journal of software, 2018, 29(1): 89-108
[16] WARD JR J H. Hierarchical grouping to optimize an objective function[J]. Journal of the American statistical association, 1963, 58(301): 236-244.
[17] 陶莹, 杨锋, 刘洋, 等. K均值聚类算法的研究与优化[J]. 计算机技术与发展, 2018, 28(6): 90-92
TAO Ying, YANG Feng, LIU Yang, et al. Research and optimization of K-means clustering algorithm[J]. Computer technology and development, 2018, 28(6): 90-92
[18] XU Xiao, DING Shifei, DU Mingjing, et al. DPCG: an efficient density peaks clustering algorithm based on grid[J]. International journal of machine learning and cybernetics, 2018, 9(5): 743-754.
[19] DU Mingjing, DING Shifei, XUE Yu. A robust density peaks clustering algorithm using fuzzy neighborhood[J]. International journal of machine learning and cybernetics, 2018, 9(7): 1131-1140.
[20] XU Xiao, DING Shifei, SHI Zhongzhi. An improved density peaks clustering algorithm with fast finding cluster centers[J]. Knowledge-based systems, 2018, 158: 65-74.
[21] DING Shifei, DU Mingjing, SUN Tongfeng, et al. An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood[J]. Knowledge-based systems, 2017, 133: 294-313.
[22] SALVADOR S, CHAN P. Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms[C]//Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence. Boca Raton, USA, 2004.
[23] WILLIAMS C K I. Learning with kernels: support vector machines, regularization, optimization, and beyond[J]. Journal of the American statistical association, 2003, 98(462): 489.
[24] DE LIMA M D, COSTA N L, BARBOSA R. Improvements on least squares twin multi-class classification support vector machine[J]. Neurocomputing, 2018, 313: 196-205.
[25] CHEN Sugen, WU Xiaojun. Multiple birth least squares support vector machine for multi-class classification[J]. International journal of machine learning and cybernetics, 2017, 8(6): 1731-1742.
Similar References:

Memo

-

Last Update: 2021-01-15

Copyright © CAAI Transactions on Intelligent Systems