[1]WANG Dewen,WEI Botao.A small-sample image classification method based on a Siamese variational auto-encoder[J].CAAI Transactions on Intelligent Systems,2021,16(2):254-262.[doi:10.11992/tis.201906022]
Copy

A small-sample image classification method based on a Siamese variational auto-encoder

References:
[1] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1):1-19
HU Yue, LUO Dongyang, HUA Kui, et al. Overview on deep learning[J]. CAAI transactions on intelligent systems, 2019, 14(1):1-19
[2] 马世龙, 乌尼日其其格, 李小平. 大数据与深度学习综述[J]. 智能系统学报, 2016, 11(6):728-742
MA Shilong, WUNIRI Qiqige, LI Xiaoping. Deep learning with big data:state of the art and development[J]. CAAI transactions on intelligent systems, 2016, 11(6):728-742
[3] 王昊, 刘高军, 段建勇, 等. 基于特征自学习的交通模式识别研究[J]. 哈尔滨工程大学学报, 2019, 40(2):354-358
WANG Hao, LIU GaoJun, DUAN Jianyong, et al. Transportation mode detection based on self-learning of features[J]. Journal of Harbin Engineering University, 2019, 40(2):354-358
[4] 张程熠, 唐雅洁, 李永杰, 等. 适用于小样本的神经网络光伏预测方法[J]. 电力自动化设备, 2017, 37(1):101-106, 111
ZHANG Chengyi, TANG Yajie, LI Yongjie, et al. Photovoltaic power forecast based on neural network with a small number of samples[J]. Electric power automation Equipment, 2017, 37(1):101-106, 111
[5] 洪雁飞, 魏本征, 刘川, 等. 基于深度学习的椎间孔狭窄自动多分级研究[J]. 智能系统学报, 2019, 14(4):1-9
HONG Feiyan, WEI Benzheng, LIU Chuan, et al. Deep learning based automatic multi-classification algorithm for intervertebral foraminal stenosis[J]. CAAI transactions on intelligent systems, 2019, 14(4):1-9
[6] 王翔, 胡学钢. 高维小样本分类问题中特征选择研究综述[J]. 计算机应用, 2017, 37(9):2433-2438, 2448
WANG Xiang, HU Xuegang. Overview on feature selection in high-dimensional and small-sample-size classification[J]. Journal of computer applications, 2017, 37(9):2433-2438, 2448
[7] LI Feifei, FERGUS R, PERONA P. One-shot learning of object categories[J]. IEEE trans pattern anal mach intell, 2006, 28(4):594-611.
[8] LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350(6266):1332-1338.
[9] 宋丽丽. 迁移度量学习行人再识别算法[J]. 计算机工程与应用, 2019, 55(20):170-176, 201
SONG Lili. Transfer metric learning for person re-identification[J]. Computer engineering and applications, 2019, 55(20):170-176, 201
[10] 任俊, 胡晓峰, 朱丰. 基于深度学习特征迁移的装备体系效能预测[J]. 系统工程与电子技术, 2017, 39(12):2745-2749
REN Jun, HU Xiaofeng, ZHU Feng. Effectiveness prediction of weapon equipment system-of-systems based on deep learning feature transf[J]. Systems engineering and electronics, 2017, 39(12):2745-2749
[11] 谭本东, 杨军, 赖秋频, 等. 基于改进CGAN的电力系统暂态稳定评估样本增强方法[J]. 电力系统自动化, 2019, 43(1):149-160
TAN Bendong, YANG Jun, LAI QiuPin, et al. Data augment method for power system transient stability assessment based on improved conditional generative adversarial network[J]. Automation of electric power systems, 2019, 43(1):149-160
[12] 王建敏, 吴云洁. 基于聚类云模型的小样本数据可信度评估[J]. 系统仿真学报, 2019, 31(7):1263-1271
WANG Jianmin, WU Yunjie. Credibility evaluation method of small sample data based on cluster cloud model[J]. Journal of system simulation, 2019, 31(7):1263-1271
[13] 杨懿男, 齐林海, 王红, 等. 基于生成对抗网络的小样本数据生成技术研究[J]. 电力建设, 2019, 40(5):71-77
YANG Yinan, QI Linhai, WANG Hong, et al. Research on generation technology of small sample data based on generative adversarial network[J]. Electric power construction, 2019, 40(5):71-77
[14] 韩冬, 马进, 贺仁睦. 基于Bootstrap的实测负荷模型参数优选[J]. 电工技术学报, 2012, 27(8):141-146
HAN Dong, MA Jin, HE Renmu. Parameter optimization of measurement-based load model based on bootstrap[J]. Transactions of China electrotechnical society, 2012, 27(8):141-146
[15] 马晓, 张番栋, 封举富. 基于深度学习特征的稀疏表示的人脸识别方法[J]. 智能系统学报, 2016, 11(3):279-286
MA Xiao, ZHANG Fandong, FENG Jufu. Sparse representation via deep learning features based face recognition method[J]. Transactions of China electrotechnical society, 2016, 11(3):279-286
[16] 马忠丽, 刘权勇, 武凌羽, 等. 一种基于联合表示的图像分类方法[J]. 智能系统学报, 2018, 13(2):220-226
MA Zhongli, LIU Quanyong, WU Lingyu, et al. Syncretic representation method for image classification[J]. CAAI transactions on intelligent systems, 2018, 13(2):220-226
[17] 赵春晖, 齐滨, Eunseog Youn. 基于蒙特卡罗特征降维算法的小样本高光谱图像分类[J]. 红外与毫米波学报, 2013, 32(1):62-67
ZHAO Chun Hui, QI Bin, EUNSEOG Youn. Hyperspectral image classification based on Monte Carlo feature reduction method[J]. Journal of infrared and millimeter waves, 2013, 32(1):62-67
[18] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, USA, 2005:539-546.
[19] KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]//Proc of the ICML Deep Learning Workshop, Lille, France 2015.
[20] KINGMA D P, WELLING M. Auto-encoding variational bayes[C]//International Conference on Learning Representations,[S.l.], 2014.
[21] LIU Guojun, LIUYang, GUO Maozu, et al. Variational inference with Gaussian mixture model and householder flow[J]. Neural networks, 2019, 109:43-55.
[22] 宋辉, 代杰杰, 张卫东, 等. 基于变分贝叶斯自编码器的局部放电数据匹配方法[J]. 中国电机工程学报, 2018, 38(19):5869-5877, 5945
SONG Hui, DAI Jiejie, ZHANG Weidong, et al. A data matching method of partial discharge data based on auto-encoding briational Bayes[J]. Proceedings of the CSEE, 2018, 38(19):5869-5877, 5945
[23] Lu Guangquan, Zhao Xishun, Yin Jian, et al. Multi-task learning using variational auto-Encoder for sentiment classification[J]. Pattern recognition letters, 2018.
[24] ZAKHAROV N, SU H, ZHU J, et al. Towards controllable image descriptions with semi-supervised VAE[J]. Journal of visual communication and image representation, 2019, 63:102574.
[25] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Proc of the Advances in Neural Information Processing Systems, 2016:3630-3638
[26] LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. One-shot learning by inverting a compositional causal process[C]//International Conference on Neural Information Processing Systems. Curran Associates Inc 2013.
[27] ZHANG Ling, lIU Jun, LUO Minnan, et al. Hauptmann, Scheduled sampling for one-shot learning via matching network[J]. Pattern Recongnition, 2019, 96:106962.
Similar References:

Memo

-

Last Update: 2021-04-25

Copyright © CAAI Transactions on Intelligent Systems