[1]GAO Qi,LI Deyu,WANG Suge.Multi-label attribute reduction based on fuzzy inconsistency pairs[J].CAAI Transactions on Intelligent Systems,2020,15(2):374-385.[doi:10.11992/tis.201905046]
Copy

Multi-label attribute reduction based on fuzzy inconsistency pairs

References:
[1] 李华, 李德玉, 王素格, 等. 基于粗糙集的多标记专属特征学习算法[J]. 小型微型计算机系统, 2015, 36(23): 2730-2734
LI Hua, LI Deyu, WANG Suge, et al. Multi-label learning with label-specific features based on rough sets[J]. Journal of Chinese computer systems, 2015, 36(23): 2730-2734
[2] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8): 1819-1837.
[3] HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28(3/4): 321-377.
[4] SUN Liang, JI Shuiwang, YE Jieping, et al. Multi-label dimensionality reduction[M]. Florida: CRC Press, 2013: 20-22.
[5] YU Kai, YU Shipeng, TRESP V. Multi-label informed latent semantic indexing[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA, 2005: 258-265.
[6] ZHANG Lingjun, HU Qinghua, DUAN Jie, et al. Multi-label feature selection with fuzzy rough sets[C]//Proceedings of 9th International Conference on Rough Sets and Knowledge Technology. Shanghai, China, 2014: 121-128.
[7] LIN Yaojin, HU Qinghua, LIU Jinghua, et al. Multi-label feature selection based on neighborhood mutual information[J]. Applied soft computing, 2016, 38: 244-256.
[8] LI Ling, LIU Huawen, MA Zongjie, et al. Multi-label feature selection via information gain[C]//Proceedings of the 10th International Conference on Advanced Data Mining and Applications. Guilin, China, 2014: 345-355.
[9] LI Yuwen, LIN Yaojin, LIU Jinghua, et al. Feature selection for multi-label learning based on kernelized fuzzy rough sets[J]. Neurocomputing, 2018, 318: 271-286.
[10] 李京政, 杨习贝, 王平心, 等. 模糊粗糙集的稳定约简方法[J]. 南京理工大学学报, 2018, 42(1): 68-75
LI Jingzheng, YANG Xibei, WANG Pingxin, et al. Stable attribute reduction approach for fuzzy rough set[J]. Journal of Nanjing University of Science and Technology, 2018, 42(1): 68-75
[11] SPOOLA?R N, CHERMAN E A, MONARD M C, et al. Filter approach feature selection methods to support multi-label learning based on ReliefF and information gain[C]//Proceedings of 21th Brazilian Symposium on Artificial Intelligence on Advances in Artificial Intelligence. Curitiba, Brazil, 2012: 72-81.
[12] ESCALERA S, RADEVA P, PUJOL O. Complex salient regions for computer vision problems[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 18-23.
[13] JENSEN R, SHEN Qiang. New approaches to fuzzy-rough feature selection[J]. IEEE transactions on fuzzy systems, 2009, 17(4): 824-838.
[14] JENSEN R, SHEN Qiang. Fuzzy-rough sets assisted attribute selection[J]. IEEE transactions on fuzzy systems, 2007, 15(1): 73-89.
[15] CHEN Degang, ZHANG L, ZHAO Suyun, et al. A novel algorithm for finding reducts with fuzzy rough sets[J]. IEEE transactions on fuzzy systems, 2012, 20(2): 385-389.
[16] DAI Jianhua, HU Hu, WU Weizhi, et al. Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets[J]. IEEE transactions on fuzzy systems, 2018, 26(4): 2174-2187.
[17] 郭荣超, 李德玉, 王素格. 基于标记关系的模糊粗糙集模型[J]. 模式识别与人工智能, 2017, 30(10): 952-960
GUO Rongchao, LI Deyu, WANG Suge. Fuzzy rough set model based on label relations[J]. Pattern recognition and artificial intelligence, 2017, 30(10): 952-960
[18] 李晓艳, 张子刚, 张逸石, 等. 一种基于KL散度和类分离策略的特征选择算法[J]. 计算机科学, 2012, 39(12): 224-227
LI Xiaoyan, ZHANG Zigang, ZHANG Yishi, et al. KL-divergence based feature selection algorithm with the separate-class strategy[J]. Computer science, 2012, 39(12): 224-227
[19] LIN Yaojin, LI Yuwen, WANG Chenxi, et al. Attribute reduction for multi-label learning with fuzzy rough set[J]. Knowledge-based systems, 2018, 152: 54-61.
[20] 林梦雷, 刘景华, 王晨曦, 等. 基于标记权重的多标记特征选择算法[J]. 计算机科学, 2017, 44(10): 289-295, 317
LIN Menglei, LIU Jinghua, WANG Chenxi, et al. Multi-label feature selection algorithm based on label weighting[J]. Computer science, 2017, 44(10): 289-295, 317
[21] SPOLA?R N, CHERMAN E A, MONARD M C, et al. ReliefF for multi-label feature selection[C]//Proceedings of 2013 Brazilian Conference on Intelligent Systems. Fortaleza, Brazil, 2013: 6-11.
[22] ZHANG Minling, ZHOU Zhihua. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7): 2038-2048.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems