[1]LIU Zhao,ZHANG Liming,GENG Meixiao,et al.Object detection of high-voltage cable based on improved Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2019,14(4):627-634.[doi:10.11992/tis.201905026]
Copy

Object detection of high-voltage cable based on improved Faster R-CNN

References:
[1] 赵玉良, 戚晖, 陈凡明, 等. 高压带电作业机器人专用遥控剥皮器的研制[J]. 微计算机信息, 2010, 26(32):146-147, 119 ZHAO Yuliang, QI Hui, CHEN Fanming, et al. Design on the remote controlled electric-driving remover for live working robot[J]. Microcomputer information, 2010, 26(32):146-147, 119
[2] 王振利, 鲁守银, 李健, 等. 高压带电作业机器人视觉伺服系统[J]. 制造业自动化, 2013, 35(7):69-72 WANG Zhenli, LU Shouyin, LI Jian, et al. Vision servo system for high-voltage live working robot[J]. Manufacturing automation, 2013, 35(7):69-72
[3] 于进勇, 丁鹏程, 王超. 卷积神经网络在目标检测中的应用综述[J]. 计算机科学, 2018, 45(S2):17-26 YU Jinyong, DING Pengcheng, WANG Chao. Overview:application of convolution neural network in object detection[J]. Computer science, 2018, 45(S2):17-26
[4] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN:delving into high quality object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:6154?6162.
[5] 宋焕生, 张向清, 郑宝峰, 等. 基于深度学习方法的复杂场景下车辆目标检测[J]. 计算机应用研究, 2018, 35(4):1270-1273 SONG Huansheng, ZHANG Xiangqing, ZHENG Baofeng, et al. Vehicle detection based on deep learning in complex scene[J]. Application research of computers, 2018, 35(4):1270-1273
[6] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554.
[7] 毕晓君, 冯雪赟. 基于改进深度学习模型C-GRBM的人体行为识别[J]. 哈尔滨工程大学学报, 2018, 39(1):156-162 BI Xiaojun, FENG Xueyun. Human action recognition based on improved depth learning model C-GRBM[J]. Journal of Harbin Engineering University, 2018, 39(1):156-162
[8] 龙慧, 朱定局, 田娟. 深度学习在智能机器人中的应用研究综述[J]. 计算机科学, 2018, 45(S2):43-47, 52 LONG Hui, ZHU Dingju, TIAN Juan. Research on deep learning used in intelligent robots[J]. Computer science, 2018, 45(S2):43-47, 52
[9] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8):1289-1305 ZHANG Hui, WANG Kunfeng, WANG Feiyue. Advances and perspectives on applications of deep learning in visual object detection[J]. Acta automatica sinica, 2017, 43(8):1289-1305
[10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:580?587.
[11] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916.
[12] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:1440?1448.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:779?788.
[14] 莫宏伟, 汪海波. 基于Faster R-CNN的人体行为检测研究[J]. 智能系统学报, 2018, 13(6):967-973 MO Hongwei, WANG Haibo. Research on human behavior detection based on Faster R-CNN[J]. CAAI transactions on intelligent systems, 2018, 13(6):967-973
[15] 曹宇剑, 徐国明, 史国川. 基于旋转不变Faster R-CNN的低空装甲目标检测[J]. 激光与光电子学进展, 2018, 55(10):101501 CAO Yujian, XU Guoming, SHI Guochuan. Low altitude armored target detection based on rotation invariant faster R-CNN[J]. Laser and optoelectronics progress, 2018, 55(10):101501
[16] 魏湧明, 全吉成, 侯宇青阳. 基于YOLO v2的无人机航拍图像定位研究[J]. 激光与光电子学进展, 2017, 54(11):111002 WEI Yongming, QUAN Jicheng, HOU Yuqingyang. Aerial image location of unmanned aerial vehicle based on YOLO v2[J]. Laser and optoelectronics progress, 2017, 54(11):111002
[17] REN Shaoqing, HE Kaiming, GIRSHICK R, SUN J. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6):1137-1149.
[18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016:770?778.
[19] XIE Saining, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:5987?5995.
Similar References:

Memo

-

Last Update: 2019-08-25

Copyright © CAAI Transactions on Intelligent Systems