[1]LU Xuzheng,CAI Hengjin,LIN Li.Recognition of Oracle Radical based on the Capsule network[J].CAAI Transactions on Intelligent Systems,2020,15(2):243-254.[doi:10.11992/tis.201904069]
Copy

Recognition of Oracle Radical based on the Capsule network

References:
[1] 朱彦民. 从甲骨文说到中国文化自信[J]. 殷都学刊, 2018, 39(3): 23-34
ZHU Yanmin. From the oracle to Chinese culture confidence[J]. Yindu journal, 2018, 39(3): 23-34
[2] 竺海燕. 甲骨構件與甲骨文構形系統研究[D]. 上海: 华东师范大学, 2005.
ZHU Haiyan. Research of the structural element and structural system of the oracle-bone inscriptions[D]. Shanghai: East China Normal University, 2005.
[3] 周新伦, 李锋, 华星城, 等. 甲骨文计算机识别方法研究[J]. 复旦学报(自然科学版), 1996, 35(5): 481-486
ZHOU Xinlun, LI Feng, HUA Xingcheng, et al. A method of Jia Gu Wen recognition based on a two-level classification[J]. Journal of Fudan University (Natural Science), 1996, 35(5): 481-486
[4] 李锋, 周新伦. 甲骨文自动识别的图论方法[J]. 电子科学学刊, 1996, 18(S1): 41-47
LI Feng, ZHOU Xinlun. Recohnition of Jia Gu Wen based on graph theory[J]. Journal of electronics, 1996, 18(S1): 41-47
[5] 李东琦, 刘永革. 基于构件的甲骨文字编码器设计与实现[J]. 科技创新导报, 2010(15): 18
LI Dongqi, LIU Yongge. Design and implementation of radical-based oracle encoder[J]. Science and technology consulting herald, 2010(15): 18
[6] 高峰, 吴琴霞, 刘永革, 等. 基于语义构件的甲骨文模糊字形的识别方法[J]. 科学技术与工程, 2014, 14(30): 67-70, 86
GAO Feng, WU Qinxia, LIU Yongge, et al. Recognition of fuzzy inscription character based on component for bones or tortoise shells[J]. Science technology and engineering, 2014, 14(30): 67-70, 86
[7] 吴琴霞, 栗青生, 高峰. 基于语义构件的甲骨文字库自动生成技术研究[J]. 北京大学学报(自然科学版), 2014, 50(1): 161-166
WU Qinxia, LI Qingsheng, GAO Feng. Study on the technique of automatic generation of oracle characters based on semantic component[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(1): 161-166
[8] 顾绍通. 基于分形几何的甲骨文字形识别方法[J]. 中文信息学报, 2018, 32(10): 138-142
GU Shaotong. Identification of oracle-bone script fonts based on fractal geometry[J]. Journal of Chinese information processing, 2018, 32(10): 138-142
[9] 李宗焜. 甲骨文字编[M]. 北京: 中华书局, 2012.
[10] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, USA, 2017: 3856-3866.
[11] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[12] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012: 1097-1105.
[13] HINTON G, SABOUR S, FROSST N. Matrix capsules with EM routing[C]//Proceedings of the 6th International Conference on Learning Representations, ICLR. 2018.
[14] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 580-587.
[15] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, USA, 2015: 1440-1448.
[16] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929-1958.
[17] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA, 2011: 315-323.
[18] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2018-10-15] https://arxiv.org/abs/1502.03167v1.
[19] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2018-10-05] https://arxiv.org/abs/1412.6980.
[20] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 2818-2826.
[21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[22] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 1251-1258.
[23] PEREZ L, WANG J. The effectiveness of data augmentation in image classification using deep learning[EB/OL]. [2018-09-05] https://arxiv.org/abs/1712.04621.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems