[1]HE Qiang,ZHANG Jiaoyang.Kernel-target alignment multi-kernel fuzzy support vector machine[J].CAAI Transactions on Intelligent Systems,2019,14(6):1163-1169.[doi:10.11992/tis.201904050]
Copy

Kernel-target alignment multi-kernel fuzzy support vector machine

References:
[1] VAPNIK V N. The nature of statistical learning theory[M]. 2nd ed. New York:Springer-Verlag, 1999:69-110.
[2] 邓乃扬, 田英杰. 支持向量机:理论、算法与拓展[M]. 北京:科学出版社, 2009:115-132.
[3] LIN Chunfu, WANG Shengde. Fuzzy support vector machines[J]. IEEE transactions on neural networks, 2002, 13(2):464-471.
[4] SIAHROUDI S K, MOODI P Z, BEIGY H. Detection of evolving concepts in non-stationary data streams:a multiple kernel learning approach[J]. Expert systems with applications, 2018, 91:187-197.
[5] GONEN M, ALPAYDIN E. Multiple kernel learning algorithms[J]. Journal of machine learning research, 2011, 12:2211-2268.
[6] CRISTIANINI N, SHAWE-TAYLOR J, ELISSEEFF A, et al. On kernel-target alignment[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, Canada, 2001:367-373.
[7] HE Qiang, WU Congxin. Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets[J]. Soft computing, 2011, 15(6):1105-1114.
[8] LIN Chunfu, WANG Shengde. Training algorithms for fuzzy support vector machines with noisy data[J]. Pattern recognition letters, 2004, 25(14):1647-1656.
[9] CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge:Cambridge University Press, 2000:1-28.
[10] DE DIEGO I M, MU?OZ A, MOGUERZA J M. Methods for the combination of kernel matrices within a support vector framework[J]. Machine learning, 2010, 78(1/2):137-174.
[11] CHRISTOUDIAS C M, URTASUN R, DARRELL T. Bayesian localized multiple kernel learning. Technical Report No. UCB/EECS-2009-96[R]. Berkeley:University of California, 2009:1531-1565.
[12] BEN-HUR A, NOBLE W S. Kernel methods for predicting protein-protein interactions[J]. Bioinformatics, 2005, 21(S1).
[13] QIU Shibin, LANE T. A Framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2009, 6(2):190-199.
[14] VARMA M, RAY D. Learning the discriminative power-invariance trade-off[C]//Proceedings of 2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007:1-8.
[15] 杜海洋. 简化多核支持向量机的研究[D]. 北京:北京交通大学, 2015:13-25. DU Haiyang. Research of reduced multiple kernel support vector machine[D]. Beijing:Beijing Jiaotong University, 2015:13-25.
[16] WANG Tinghua, ZHAO Dongyan, TIAN Shengfeng. An overview of kernel alignment and its applications[J]. Artificial intelligence review, 2015, 43(2):179-192.
[17] ZHONG Shangping, CHEN Daya, XU Qianfen, et al. Optimizing the Gaussian kernel function with the formulated kernel target alignment criterion for two-class pattern classification[J]. Pattern recognition, 2013, 46(7):2045-2054.
[18] 刘向东, 骆斌, 陈兆乾. 支持向量机最优模型选择的研究[J]. 计算机研究与发展, 2005, 42(4):576-581 LIU Xiangdong, LUO Bin, CHEN Zhaoqian. Optimal model selection for support vector machines[J]. Journal of computer research and development, 2005, 42(4):576-581
[19] 周炜, 周创明, 史朝辉, 等. 粗糙集理论及应用[M]. 北京:清华大学出版社, 2015:57-64.
[20] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International journal of general systems, 1990, 17(2/3):191-209.
[21] DUBOIS D, PRADE H. Putting rough sets and fuzzy sets together[M]//S?OWI?SKI R. Intelligent Decision Support:Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht, Netherlands:Springer, 1992:203-232.
[22] CHEN Degang, YANG Yongping, WANG Hui. Granular computing based on fuzzy similarity relations[J]. Soft computing, 2011, 15(6):1161-1172.
[23] CHEN Linlin, CHEN Degang, WANG Hui. Alignment based kernel selection for multi-label learning[J]. Neural processing letters, 2019, 49(3):1157-1177.
Similar References:

Memo

-

Last Update: 2019-12-25

Copyright © CAAI Transactions on Intelligent Systems