[1]WANG Changan,TIAN Jinwen.Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15(2):296-301.[doi:10.11992/tis.201901004]
Copy

Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks

References:
[1] LIN Jiale, YANG Xubo, XIAO Shuangjiu, et al. A line segment based inshore ship detection method[M]//DENG Wei. Future Control and Automation. Berlin, Heidelberg: Springer, 2012: 261-269.
[2] 雷琳, 粟毅. 一种基于轮廓匹配的近岸舰船检测方法[J]. 遥感技术与应用, 2007, 22(5): 622-627
LEI Lin, SU Yi. An inshore ship detection method based on contour matching[J]. Remote sensing technology and application, 2007, 22(5): 622-627
[3] 李毅, 徐守时. 基于支持向量机的遥感图像舰船目标识别方法[J]. 计算机仿真, 2006, 23(6): 180-183
LI Yi, XU Shoushi. A new method for ship target recognition based on support vector machine[J]. Computer simulation, 2006, 23(6): 180-183
[4] LIN Haoning, SHI Zhenwei, ZOU Zhengxia, et al. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE geoscience and remote sensing letters, 2017, 14(10): 1665-1669.
[5] YANG Xue, SUN Hao, FU Kun, et al. Automatic ship detection of remote sensing images from google earth in complex scenes based on multi-scale rotation dense feature pyramid networks[J]. arXiv preprint arXiv: 1806.04331, 2018.
[6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montréal, Canada, 2014: 2672-2680.
[7] XU Suhui, MU Xiaodong, CHAI Dong, et al. Remote sensing image scene classification based on generative adversarial networks[J]. Remote sensing letters, 2018, 9(7): 617-626.
[8] WANG Xiaolong, SHRIVASTAVA A, GUPTA A. A-fast-RCNN: hard positive generation via adversary for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017: 1063-6919.
[9] MA Jianqi, SHAO Weiyuan, YE Hao, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE transactions on multimedia, 2018, 20(11): 3111-3122.
[10] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440-1448.
[11] CHENG Bowen, WEI Yunchao, SHI Honghui, et al. Revisiting RCNN: on awakening the classification power of faster RCNN[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 473-490.
[12] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv: 1511.06434, 2015.
[13] EVERINGHAM M, VAN GOOL L, WILLIAMS C, et al. The PASCAL visual object classes challenge 2007(VOC2007) results[EB/OL]. University of Oxford, 2007. http://host.robots.ox.ac.uk/pascal/VOC/.
[14] LIAO Minghui, SHI Baoguang, BAI Xiang. TextBoxes++: a single-shot oriented scene text detector[J]. IEEE transactions on image processing, 2018, 27(8): 3676-3690.
[15] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montréal, Canada, 2015: 91-99.
[16] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579-2605.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems