[1]YAN Jiameng,XU Libo,LI Xingsen,et al.Dynamic analysis method of importance of science and education interpersonal network nodes based on extension clustering[J].CAAI Transactions on Intelligent Systems,2019,14(5):915-921.[doi:10.11992/tis.201811012]
Copy

Dynamic analysis method of importance of science and education interpersonal network nodes based on extension clustering

References:
[1] ADAMIC L A, HUBERMAN B A, BARABÁSI A L, et al. Power-law distribution of the world wide web[J]. Science, 2000, 287(5461):2115.
[2] 于会, 刘尊, 李勇军. 基于多属性决策的复杂网络节点重要性综合评价方法[J]. 物理学报, 2013, 62(2):020204 YU Hui, LIU Zun, LI Yongjun. Key nodes in complex networks identified by multi-attribute decision-making method[J]. Acta physica sinica, 2013, 62(2):020204
[3] ALBERT R, JEONG H, BARABÁSI A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794):378-382.
[4] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1):35-41.
[5] WEHMUTH K, ZIVIANI A. DACCER:distributed assessment of the closeness centrality ranking in complex networks[J]. Computer networks, 2013, 57(13):2536-2548.
[6] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature physics, 2010, 6(11):888-893.
[7] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic spreading in scale-free networks[J]. Physical review letters, 2001, 86(14):3200-3203.
[8] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social networks, 1979, 1(3):215-239.
[9] OPSAHL T, AGNEESSENS F, SKVORETZ J. Node centrality in weighted networks:generalizing degree and shortest paths[J]. Social networks, 2010, 32(3):245-251.
[10] SABIDUSSI G. The centrality index of a graph[J]. Psychometrika, 1966, 31(4):581-603.
[11] CLAUSET A, SHALIZI C R, NEWMAN M E J. Power-law distributions in empirical data[J]. SIAM review, 2009, 51(4):661-703.
[12] CARMI S, HAVLIN S, KIRKPATRICK S, et al. A model of Internet topology using k-shell decomposition[J]. Proceedings of the national academy of sciences of the United States of America, 2007, 104(27):11150-11154.
[13] 杨春燕, 蔡文. 可拓学[M]. 北京:科学出版社, 2014.
[14] 杨国为, 王守觉. 模式可拓识别及其神经网络模型[J]. 哈尔滨工业大学学报, 2006, 38(7):1129-1132 YANG Guowei, WANG Shoujue. Pattern extension recognition and its neural network model[J]. Journal of Harbin Institute of Technology, 2006, 38(7):1129-1132
[15] XU Libo, LI Xingsen, PANG Chaoyi. Uncertain multiattribute decision-making based on interval number with extension-dependent degree and regret aversion[J]. Mathematical problems in engineering, 2018, 2018:6508636.
[16] XU Libo, LI Xingsen, SHAO Junkai, et al. Extension dependent degree method with mapping transformation for three-parameter interval number decision making[J]. Mathematical problems in engineering, 2018, 2018:1831086.
[17] 王晓磊, 杨岳湘, 何杰. 基于多重属性的P2P网络节点重要性度量方法[J]. 计算机应用, 2014, 34(S2):7-10, 19 WANG Xiaolei, YANG Yuexiang, HE Jie. P2P network node importance measurement method based on multi-attribute[J]. Journal of computer applications, 2014, 34(S2):7-10, 19
[18] 胡庆成, 尹龑燊, 马鹏斐, 等. 一种新的网络传播中最有影响力的节点发现方法[J]. 物理学报, 2013, 62(14):140101 HU Qingcheng, YIN Yanshen, MA Pengfei, et al. A new approach to identify influential spreaders in complex networks[J]. Acta physica sinica, 2013, 62(14):140101
[19] 蔡文, 杨春燕, 陈文伟, 等. 可拓集与可拓数据挖掘[M]. 北京:科学出版社, 2008:6.
[20] 杨春燕. 可拓创新方法[M]. 北京:科学出版社, 2017:3.
[21] 蔡文, 杨春燕. 可拓学的基础理论与方法体系[J]. 科学通报, 2013, 58(13):1190-1199 CAI Wen, YANG Chunyan. Basic theory and methodology on Extenics[J]. Chinese science bulletin, 2013, 58(13):1190-1199
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems