[1]LI Yinan,WANG Shitong.A feature augmentation method for enhancing the labeling quality of crowdsourcing data[J].CAAI Transactions on Intelligent Systems,2020,15(2):227-234.[doi:10.11992/tis.201810014]
Copy

A feature augmentation method for enhancing the labeling quality of crowdsourcing data

References:
[1] ZHOU Zhihua. A brief introduction to weakly supervised learning[J]. National science review, 2018, 5(1): 44-53.
[2] HU Huiqi, ZHENG Yudian, BAO Zhifeng, et al. Crowdsourced POI labelling: location-aware result inference and task assignment[C]//Proceedings of 2016 IEEE 32nd International Conference on Data Engineering. Helsinki, Finland, 2016: 61-72.
[3] RODRIGUES F, PEREIRA F C, RIBEIRO B. Gaussian process classification and active learning with multiple annotators[C]//Proceedings of the 31st International Conference on International Conference on Machine Learning. Beijing, China, 2014: II-433-II-441.
[4] ZHANG Jing, SHENG V S, LI Tao, et al. Improving crowdsourced label quality using noise correction[J]. IEEE transactions on neural networks and learning systems, 2018, 29(5): 1675-1688.
[5] IPEIROTIS P G, PROVOST F, SHENG V S, et al. Repeated labeling using multiple noisy labelers[J]. Data mining and knowledge discovery, 2014, 28(2): 402-441.
[6] WHITEHILL J, RUVOLO P, WU Tingfan, et al. Whose vote should count more: optimal integration of labels from labelers of unknown expertise[C]//Proceedings of the 22nd International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2009: 2035-2043.
[7] RAYKAR V C, YU Shisheng, ZHAO L H, et al. Learning from crowds[J]. Journal of machine learning research, 2010, 11: 1297-1322.
[8] DEMARTINI G, DIFALLAH D E, CUDRé-MAUROUX P. ZenCrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking[C]//Proceedings of the 21st International Conference on World Wide Web. Lyon, France, 2012: 469-478.
[9] MUHAMMADI J, RABIEE H R, HOSSEINI A. A unified statistical framework for crowd labeling[J]. Knowledge and information systems, 2015, 45(2): 271-294.
[10] FRENAY B, VERLEYSEN M. Classification in the presence of label noise: a survey[J]. IEEE transactions on neural networks and learning systems, 2014, 25(5): 845-869.
[11] GAMBERGER D, LAVRA? N, D?EROSKI S. Noise elimination in inductive concept learning: a case study in medical diagnosis[C]//Proceedings of the 7th International Workshop on Algorithmic Learning Theory. Sydney, Australia, 1996: 199-212.
[12] SUN Jiangwen, ZHAO Fengying, WANG Chongjun, et al. Identifying and correcting mislabeled training instances[C]//Proceedings of Future Generation Communication and Networking. Jeju, South Korea, 2007: 244-250.
[13] BRODLEY C E, FRIEDL M A. Identifying mislabeled training data[J]. Journal of artificial intelligence research, 1999, 11(1): 131-167.
[14] ZHOU Ta, ISHIBUCHI H, WANG Shitong. Stacked-structure-based hierarchical Takagi-Sugeno-Kang fuzzy classification through feature augmentation[J]. IEEE transactions on emerging topics in computational intelligence, 2017, 1(6): 421-436.
[15] ZHOU Zhihua. Ensemble methods: foundations and algorithms[M]. Boca Raton: Taylor & Francis, 2012.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems