[1]HONG Yanfei,WEI Benzheng,LIU Chuan,et al.Deep learning based automatic multi-classification algorithm for intervertebral foraminal stenosis[J].CAAI Transactions on Intelligent Systems,2019,14(4):708-715.[doi:10.11992/tis.201806015]
Copy

Deep learning based automatic multi-classification algorithm for intervertebral foraminal stenosis

References:
[1] KANEKO Y, MATSUMOTO M, TAKAISHI H, et al. Morphometric analysis of the lumbar intervertebral foramen in patients with degenerative lumbar scoliosis by multidetector-row computed tomography[J]. European spine journal, 2012, 21(12):2594-2602.
[2] RAJAEE S S, BAE H W, KANIM L E, et al. Spinal fusion in the united states:analysis of trends from 1998 to 2008[J]. Spine, 2012, 37(1):67-76.
[3] LEE S, LEE J W, YEOM J S, et al. A practical MRI grading system for lumbar foraminal stenosis[J]. American journal of roentgenology, 2010, 194(4):1095-1098.
[4] HAN Zhongyi, WEI Benzheng, LEUNG S, et al. Automated pathogenesis-based diagnosis of lumbar neural foraminal stenosis via deep multiscale multitask learning[J]. Neuroinformatics, 2018, 16(3/4):325-337.
[5] ALOMARI R S, CORSO J J, CHAUDHARY V. Labeling of lumbar discs using both pixel-and object-level features with a two-level probabilistic model[J]. IEEE transactions on medical imaging, 2011, 30(1):1-10.
[6] ZHAN Yiqiang, MANEESH D, HARDER M, et al. Robust MR spine detection using hierarchical learning and local articulated model[C]//Proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention. Nice, France, 2012:141–148, DOI:10.1007/978-3-642-33415-3_18.
[7] WANG Zhijie, ZHEN Xiantong, TAY K, et al. Regression segmentation for M3 spinal images[J]. IEEE transactions on medical imaging, 2015, 34(8):1640-1648.
[8] GHOSHA S, ALOMARI R S, CHAUDHARY V, et al. Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis[C]//Proceedings of the SPIE 7963, Medical Imaging 2011:Computer-Aided Diagnosis. Lake Buena Vista (Orlando), United States, 2011:796303, DOI:10.1117/12.878055.
[9] HUANG S H, CHU Yihong, LAI Shanghong, et al. Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI[J]. IEEE transactions on medical imaging, 2009, 28(10):1595-1605.
[10] KLINDER T, WOLZ R, LORENZ C, et al. Spine segmentation using articulated shape models[C]//Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention. New York, USA, 2008:227-234.
[11] HE Xiaoxu, YIN Yilong, SHARMA M, et al. Automated diagnosis of neural foraminal stenosis using synchronized superpixels representation[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, Greece, 2016:335-343.
[12] VERBIEST H. Results of surgical treatment of idiopathic developmental stenosis of the lumbar vertebral canal. A review of twenty-seven years’ experience[J]. The journal of bone and joint surgery, 1977, 59(2):181-188.
[13] LO S C B, LOU S L A, LIN J S, et al. Artificial convolution neural network techniques and applications for lung nodule detection[J]. IEEE transactions on medical imaging, 1995, 14(4):711-718.
[14] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical image analysis, 2017, 42(9):60-88.
[15] WANG Xiaosong, PENG Yifan, LU Le, et al. ChestX-Ray8:Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]//Proceeding of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:3462-3471.
[16] SHEN Dinggang, WU Guorong, SUK H I. Deep learning in medical image analysis[J]. Annual review of biomedical engineering, 2017, 19:221-248.
[17] BENGIO Y, DELALLEAU O. On the expressive power of deep architectures[C]//Proceedings of the 22nd International Conference on Algorithmic Learning Theory. Espoo, Finland, 2011:18-36.
[18] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.
[19] WILDERMUTH S, ZANETTI M, DUEWELL S, et al. Magnetic resonance imaging and magnetic resonance myelography in the presurgical diagnosis of lumbar foraminal stenosis[J]. Spine, 2007, 32(8):896-903.
[20] JIA Yangqing, SHELHAMER E, DONAHUE J, et al. Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, USA, 2014:675-678.
[21] OJALA T, PIETIK?INEN M, M?ENP?? T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE transactions on pattern analysis and machine intelligence, 2002, 24(7):971-987.
[22] GUO Zhenhua, ZHANG Lei, ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE transactions on image processing, 2010, 19(6):1657-1663.
[23] HONG Huichao, ZHENG Lixin, PAN Shuwan. Fast computational technique for gray-level co-occurrence matrix based on graphics process unit in biomedical engineering applications[J]. Journal of medical imaging and health informatics, 2018, 8(2):309-312.
[24] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB:an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain, 2011:2564-2571.
[25] ?AHAN S, POLAT K, KODAZ H, et al. A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis[J]. Computers in biology and medicine, 2007, 37(3):415-423.
[26] WONG P K, GAO Xianghui, WONG K I, et al. Online extreme learning machine based modeling and optimization for point-by-point engine calibration[J]. Neurocomputing, 2018, 277:187-197.
[27] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3):273-297.
[28] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
Similar References:

Memo

-

Last Update: 2019-08-25

Copyright © CAAI Transactions on Intelligent Systems