[1]YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14(3):566-574.[doi:10.11992/tis.201804056]
Copy

A multi-label classification algorithm based on an improved convolutional neural network

References:
[1] TROHIDIS K, TSOUMAKAS G, KALLIRIS G, et al. Multilabel classification of music into emotions[C]//Proceedings of 2008 International Conference on Music Information Retrieval (ISMIR 2008). Philadelphia, USA, 2008:325-330.
[2] WU Baoyuan, LYU S, HU Baoguang, et al. Multi-label learning with missing labels for image annotation and facial action unit recognition[J]. Pattern recognition, 2015, 48(7):2279-2289.
[3] JIANG J Q, MCQUAY L J. Predicting protein function by multi-label correlated semi-supervised learning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2012, 9(4):1059-1069.
[4] OZONAT K, YOUNG D. Towards a universal marketplace over the web:statistical multi-label classification of service provider forms with simulated annealing[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:1295-1304.
[5] GONG Y, JIA Y, LEUNG T, et al. Deep convolutional ranking for multilabel image annotation[C]. 2nd International Conference on Learning Representations, ICLR 2014. Banff, Canada, 2014:1312-1320.
[6] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8):1819-1837.
[7] LUACES O, DíEZ J, BARRANQUERO J, et al. Binary relevance efficacy for multilabel classification[J]. Progress in artificial intelligence, 2012, 1(4):303-313.
[8] READ J, PFAHRINGER B, HOLMES G. Multi-label classification using ensembles of pruned sets[C]//ICDM’08. Eighth IEEE International Conference on Data Mining. Pisa, Italy, 2008:995-1000.
[9] WAN Shupeng, XU Jianhua. A multi-label classification algorithm based on triple class support vector machine[C]//Proceedings of 2007 International Conference on Wavelet Analysis and Pattern Recognition. Beijing, China, 2008:1447-1452.
[10] 张敏灵. 一种新型多标记懒惰学习算法[J]. 计算机研究与发展, 2012, 49(11):2271-2282 ZHANG Minling. An improved multi-label lazy learning approach[J]. Journal of computer research and development, 2012, 49(11):2271-2282
[11] ZHANG Mimling. ML-RBF:RBF neural networks for multi-label learning[J]. Neural processing letters, 2009, 29(2):61-74.
[12] WANG Jiang, YANG Yi, MAO Junhua, et al. CNN-RNN:a unified framework for multi-label image classification[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:2285-2294.
[13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012:1097-1105.
[14] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations, ICLR 2015. San Diego, USA, 2015:1409-1422.
[15] DAI Wenyuan, XUE Guirong, YANG Qiang, et al. Co-clustering based classification for out-of-domain documents[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007:210-219.
[16] ZHUO H H, YANG Qiang. Action-model acquisition for planning via transfer learning[J]. Artificial intelligence, 2014, 212:80-103.
[17] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009:248-255.
[18] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:2818-2826.
[19] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2):303-338.
[20] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(4):640-651.
[21] ZHANG Chenlin, LUO Jianhao, WEI Xiushen, et al. In defense of fully connected layers in visual representation transfer[C]//Proceedings of the 18th Pacific-Rim Conference on Multimedia on Advances in Multimedia Information Processing. Harbin, China, 2017:807-817.
[22] HARZALLAH H, JURIE F, SCHMID C. Combining efficient object localization and image classification[C]//Proceedings of 2009 IEEE International Conference on Computer Vision. Kyoto, Japan, 2009:237-244.
[23] PERRONNIN F, SáNCHEZ J, MENSINK T. Improving the fisher kernel for large-scale image classification[C]//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece, 2010:143-156.
[24] YANG Jingjing, LI Yuanning, TIAN Yonghong, et al. Group-sensitive multiple kernel learning for object categorization[C]//Proceedings of 2009 IEEE International Conference on Computer Vision. Kyoto, Japan, 2009:436-443.
[25] OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:1717-1724.
[26] WEI Y, XIA W, LIN M, et al. HCP:a flexible CNN framework for multi-label image classification[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(9):1901-1907.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems