[1]QIAN Xiaoyu,GE Hongwei,CAI Ming.Decomposition and continuous mutation-based multi-objective particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2019,14(3):464-470.[doi:10.11992/tis.201711015]
Copy

Decomposition and continuous mutation-based multi-objective particle swarm optimization

References:
[1] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Perth, WA, Australia, Australia:IEEE, 1995:1942-1948.
[2] COELLO C A C, LECHUGA M S. MOPSO:a proposal for multiple objective particle swarm optimization[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, HI, USA:IEEE, 2002:1051-1056.
[3] COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE transactions on evolutionary computation, 2004, 8(3):256-279.
[4] RAQUEL C R, NAVAL P C JR. An effective use of crowding distance in multiobjective particle swarm optimization[C]//Proceedings of the 7th Annual Conference Genetic and Evolutionary Computation Washington, DC, USA:ACM, 2005:257-264.
[5] LI Li, WANG Wanliang, XU Xinli. Multi-objective Particle swarm optimization based on global margin ranking[J]. Information sciences, 2017, 375:30-47.
[6] LIN Qiuzhen, LI Jiangqiang, DU Zhihua, et al. A novel multi-objective particle swarm optimization with multiple search strategies[J]. European journal of operational research, 2015, 247(3):732-744.
[7] DAI Cai, WANG Yuping, YE Miao. A new multi-objective particle swarm optimization algorithm based on decomposition[J]. Information sciences, 2015, 325:541-557.
[8] CHENG Tingli, CHEN Minyou, FLEMING P J, et al. A novel hybrid teaching learning based multi-objective particle swarm optimization[J]. Neurocomputing, 2017, 222:11-25.
[9] SU Yixin, CHI Rui. Multi-objective particle swarm-differential evolution algorithm[J]. Neural Computing and applications, 2017, 28(2):407-418.
[10] ZITZLER E, LAUMANNS M, THIELE L. SPEA2:Improving the strength Pareto evolutionary algorithm for multiobjective optimization[M]//GIANNAKOGLOU K C, TSAHALIS D T, PéRIAUX J, et al. Evolutionary Methods for Design, Optimisation and Control with Applications to Industrial Problems. Athens, Greece:International Center for Numerical Methods in Engineering, 2002:95-100.
[11] JORDEHI A R. Enhanced leader PSO (ELPSO):a new PSO variant for solving global optimisation problems[J]. Applied Soft Computing, 2015, 26:401-417.
[12] 陈明杰, 黄佰川, 张旻. 混合改进蚁群算法的函数优化[J]. 智能系统学报, 2012, 7(4):370-376 CHEN Mingjie, HUANG Baichuan, ZHANG Min. Function optimization based on an improved hybrid ACO[J]. CAAI transactions on intelligent systems, 2012, 7(4):370-376
[13] CHELLAPILLA K, FOGEL D B. Two new mutation operators for enhanced search and optimization in evolutionary programming[C]//Proceedings Volume 3165, Applications of Soft Computing. San Diego, CA, United States:SPIE, 1997:260-269.
[14] GONG Maoguo, JIAO Licheng, DU Haifeng, et al. Multiobjective immune algorithm with nondominated neighbor-based selection[J]. Evolutionary computation, 2008, 16(2):225-255.
[15] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997, 11(4):341-359.
[16] ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers:an analysis and review[J]. IEEE transactions on evolutionary computation, 2003, 7(2):117-132.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems