[1]MA Zhiqiang,LI Tuya,YANG Shuangtao,et al.Mongolian acoustic modeling based on deep neural network[J].CAAI Transactions on Intelligent Systems,2018,13(3):486-492.[doi:10.11992/tis.201710029]
Copy

Mongolian acoustic modeling based on deep neural network

References:
[1] 马志强, 张泽广, 闫瑞, 等. 基于N-Gram模型的蒙古语文本语种识别算法的研究[J]. 中文信息学报, 2016, 30(1):133-140. MA Zhiqiang, ZHANG Zeguang, YAN Rui, et al. N-Gram based language identification for Mongolian text[J]. Journal of Chinese information processing, 2016, 30(1):133-140.
[2] RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2):257-286.
[3] RABINER L, JUANG B H. Fundamentals of Speech Recognition[M]. Upper Saddle River, USA:Prentice-Hall, 1993.
[4] RENALS S, MORGAN N, BOURLARD H, et al. Connectionist probability estimators in HMM speech recognition[J]. IEEE transactions on speech and audio processing, 1994, 2(1):161-174.
[5] LI Deng, HINTON G, KINGSBURY B. New types of deep neural network learning for speech recognition and related applications:an overview[C]//Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada, 2013:8599-8603.
[6] HINTON G, DENG Li, YU Dong, et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE signal processing magazine, 2012, 29(6):82-97.
[7] YU Dong, DENG Li, DAHL G E. Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition[C]//Proceedings of NIPS Workshop on Deep Learning and Unsupervised Feature Learning. 2010.
[8] DAHL G E, YU Dong, DENG Li, et al. Large vocabulary continuous speech recognition with context-dependent DBN-HMMs[C]//Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Prague, Czech Republic, 2011:4688-4691.
[9] DAHL G E, YU Dong, DENG Li, et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE transactions on audio, speech, and language processing, 2012, 20(1):30-42.
[10] HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural computation, 2002, 14(8):1771-1800.
[11] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554.
[12] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[M]//SCH?LKOPF B, PLATT J, HOFFMAN T. Advances in Neural Information Processing Systems. Cambridge:MIT Press, 2007:19-153.
[13] HINTON G E. A practical guide to training restricted Boltzmann machines[R]. Toronto:University of Toronto, 2010:926-927.
[14] KHALTA B O, FUJⅡ A. A lemmatization method for Mongolian and its application to indexing for information retrieval[J]. Information processing & management, 2009, 45(4):438-451.
[15] JAIMAI P, ZUNDUI T, CHAGNAA A, et al. PC-KIMMO-based description of Mongolian morphology[J]. International journal of information processing systems, 2005, 1(1):41-48.
[16] GAO Guanglai, BILIGETU, NABUQING, et al. A Mongolian speech recognition system based on HMM[C]//Proceedings of 2006 International Conference on Intelligent Computing. Kunming, China, 2006:667-676.
[17] 飞龙, 高光来, 闫学亮, 等. 基于分割识别的蒙古语语音关键词检测方法的研究[J]. 计算机科学, 2013, 40(9):208-211. FEI Long, GAO Guanglai, Yan Xueliang, et al. Research on Mongolian spoken term detection method based on segmentation recognition[J]. Computer science, 2013, 40(9):208-211.
[18] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv:1207.0580, 2012.
[19] SRIVASTAVA N. Improving neural networks with dropout[D]. Toronto:University of Toronto, 2013.
[20] DENG Li, YU Dong. Deep learning:methods and applications[J]. Foundations and trends in signal processing, 2014, 7(3/4):197-387.
Similar References:

Memo

-

Last Update: 2018-06-25

Copyright © CAAI Transactions on Intelligent Systems